Created
July 8, 2021 04:15
-
-
Save harieamjari/f9a48e78c0e084183d77bc3493b5b0b4 to your computer and use it in GitHub Desktop.
Learning tex language.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass{article} | |
\usepackage{multicol} | |
\usepackage{amsmath} | |
\usepackage{amssymb} | |
\usepackage{mathtools} | |
\usepackage{graphicx} | |
\usepackage{enumerate} | |
\usepackage{geometry}[top=0.5in] | |
\title{Basic Calculus \\ | |
Activity II} | |
\author{Al-buharie Amjari, STEM-A} | |
\begin{document} | |
\maketitle | |
\begin{enumerate} | |
\item Complete the following table. | |
\begin{center} | |
\begin{tabular}{|c|c|c|} | |
\hline | |
$c$ & $\lim_{x \rightarrow c} 2016$ & $\lim_{x \rightarrow c} x$ \\ | |
\hline | |
$-2$ & $2016$ & $-2$ \\ | |
$-1/2$& $2016$ & $-1/2$ \\ | |
$0$ & $2016$ & $0$\\ | |
$3.1415$ & $2016$ & $3.1415$ \\ | |
$10$ & $2016$ & $10$\\ | |
$\sqrt{5}$ & $2016$ & $\sqrt{5}$ \\ | |
\hline | |
\end{tabular} | |
\end{center} | |
\item Assume the following: | |
\[\lim_{x\rightarrow c}f(x) = \frac{3}{4}, \lim_{x\rightarrow c}g(x) = 12, \lim_{x\rightarrow c}h(x) = -3.\] | |
Compute the following limits (convention: $f^{-1}(x)$ is to denote the inverse of $f$, and $f(x)^{-1}$ as $1/f(x)$): | |
\begin{multicols}{2} | |
\begin{enumerate}[a.] | |
\item $\lim_{x\rightarrow c}(-4f(x)) = -3$ | |
\item $\lim_{x\rightarrow c}\sqrt{12f(x)} = \pm 3$ | |
\item $\lim_{x\rightarrow c}(g(x)-h(x)) = 15$ | |
\item $\lim_{x\rightarrow c}(f(x)g(x)) = 9$ | |
\item $\lim_{x\rightarrow c}(f(x)^{-1}(g(x)+h(x))) = 12$ | |
\item $\lim_{x\rightarrow c}(h(x)^{-1}f(x)g(x)) = -3$ | |
\item $\lim_{x\rightarrow c}(4f(x)+h(x)) = 0$ | |
\item $\lim_{x\rightarrow c}(8f(x)-g(x)-2h(x)) = 0$ | |
\item $\lim_{x\rightarrow c}(f(x)g(x)h(x)) = -27$ | |
\item $\lim_{x\rightarrow c}\sqrt{-g(x)h(x)} = \pm 6$ | |
\item $\lim_{x\rightarrow c}(h(x)^{-2}g(x)) = 4/3$ | |
\item $\lim_{x\rightarrow c}(h(x)^{-2}g(x)f(x)) = 1$ | |
\end{enumerate} | |
\end{multicols} | |
\item Determine whether the statement is True or False. If it is false, explain what makes it false, or provide a counter example. | |
\begin{enumerate}[a.] | |
\item If $\lim_{x\rightarrow c}f(x)$ and $\lim_{x\rightarrow c}g(x)$ both exist, then $\lim_{x\rightarrow c}(f(x)\pm g(x))$ always exist $\forall x$. Answer: True. | |
\item If $\lim_{x\rightarrow c}f(x)$ and $\lim_{x\rightarrow c}g(x)$ both exist, then $\lim_{x\rightarrow c}(f(x)g(x))$ always exist $\forall x$. Answer: True. | |
\item If $\lim_{x\rightarrow c}f(x)$ and $\lim_{x\rightarrow c}g(x)$ both exist, then $\lim_{x\rightarrow c}(f(x)/g(x))$ always exist $\forall x$. Answer: | |
False. Consider $f(x)=1$ and $g(x)=x$. The limit does not exist at $x=0$. | |
\item If $\lim_{x\rightarrow c}f(x)$ exist and $p \in \mathbb{Z}$, then $\lim_{x\rightarrow c}f(x)^p$ always exist $\forall x$. Answer: | |
False. For example: $f(x)^p$ is undefined for, $f(x)=0$ and $p\in\mathbb{Z}_{\leq 0}$ | |
\item If $\lim_{x\rightarrow c}f(x)$ exist and $n\in\mathbb{N}$, then $\lim_{x\rightarrow c}\sqrt[n]{f(x)}$ always exist $\forall x$. Answer: False. For example: $\sqrt[n]{f}$ is undefined at $(-\infty,0]$, for $n\in \{2x|x\in\mathbb{N}\}$ (this does not exclude other possibilities like $n=-1/2$). | |
\end{enumerate} | |
\item Assume the following: | |
\[\lim_{x\rightarrow c}f(x) = 1, \lim_{x\rightarrow c}g(x) = -1, \lim_{x\rightarrow c}h(x) = 2.\] | |
Compute the following limits: | |
\begin{multicols}{2} | |
\begin{enumerate}[a.] | |
\item $\lim_{x\rightarrow c}(f(x)+g(x)) = 0$ | |
\item $\lim_{x\rightarrow c}(f(x)-g(x)-h(x)) = 0$ | |
\item $\lim_{x\rightarrow c}(3g(x)+5h(x)) = 7$ | |
\item $\lim_{x\rightarrow c}\sqrt{f(x)} = \pm 1$ | |
\item $\lim_{x\rightarrow c}\sqrt{g(x)} = \textrm{undefined}$ | |
\item $\lim_{x\rightarrow c}\sqrt[3]{g(x)} = -1$ | |
\item $\lim_{x\rightarrow c}h(x)^5 = 32$ | |
\item $\lim_{x\rightarrow c}(h(x)^{-1}(g(x)-f(x))) = -1$ | |
\item $\lim_{x\rightarrow c}(f(x)g(x)h(x)^2) = -4$ | |
\item $\lim_{x\rightarrow c}(1/f(x)) = 1$ | |
\item $\lim_{x\rightarrow c}(1/g(x)) = -1$ | |
\item $\lim_{x\rightarrow c}(1/h(x)) = 1/2$ | |
\item $\lim_{x\rightarrow c}(f(x)-h(x))^{-1} = -1$ | |
\item $\lim_{x\rightarrow c}(f(x)+g(x))^{-1} = \textrm{undefined}$ | |
\end{enumerate} | |
\end{multicols} | |
\item Assume $f(x)=x$. Evaluate: | |
\begin{enumerate}[a.] | |
\begin{multicols}{2} | |
\item $\lim_{x\rightarrow 4}f(x) = 4$ | |
\item $\lim_{x\rightarrow 4}(1/f(x)) = 1/4$ | |
\item $\lim_{x\rightarrow 4}(1/f(x)^2) = 16$ | |
\item $\lim_{x\rightarrow 4}-\sqrt{f(x)} = -2 $ | |
\item $\lim_{x\rightarrow 4}\sqrt{9f(x)} = \pm 6$ | |
\item $\lim_{x\rightarrow 4}(f(x)^2-f(x)) = 12$ | |
\item $\lim_{x\rightarrow 4}(f(x)^3+f(x)^2+2f(x)) = 88$ | |
\item $\lim_{x\rightarrow 4}\sqrt[n]{3f(x)^2+4f(x)} = \textrm{undefined $n$}$ | |
\item $\lim_{x\rightarrow 4} \mbox {\Large $\frac{f(x)^2-f(x)}{5f(x)}$} = 15$ | |
\item $\lim_{x\rightarrow 4} \mbox {\Large $\frac{f(x)^2-4f(x)}{f(x)^2+4f(x)}$} = 0$ | |
\end{multicols} | |
\end{enumerate} | |
\end{enumerate} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://texlive2020.latexonline.cc/compile?url=https://gist.githubusercontent.com/harieamjari/f9a48e78c0e084183d77bc3493b5b0b4/raw/271d528d7da0b30cf1b7b8878ab1a793c1913cf5/calculus101.tex&command=pdflatex