Skip to content

Instantly share code, notes, and snippets.

@harpocrates
Created August 1, 2018 20:53
Show Gist options
  • Save harpocrates/325c4cee4827e16eb7f876493d92f719 to your computer and use it in GitHub Desktop.
Save harpocrates/325c4cee4827e16eb7f876493d92f719 to your computer and use it in GitHub Desktop.
Feynmann's integral trick
\documentclass{article}
\usepackage{amsfonts}
\usepackage{amsmath}
\title{Feynmann's integral trick}
\date{August 2018}
\begin{document}
\maketitle
The trick is to define a new function $I \colon \mathbb{R} \to \mathbb{R}$ such that $I(a_0)$ is the
integral we are trying to evaluate and $I(a_1)$ reduces to something more easily evaluated. The next
step is to derive $I(a)$ w.r.t $a$. With a bit of luck, you end up in a situation that you have a
differential equation for $I(a)$, and a fixed boundary condition at $I(a_1)$.
Here is an example from Putnam:
\begin{align*}
\int_0^1 \frac{\log(x + 1)}{x^2 + 1} dx
\end{align*}
First, we defined $I(a)$, keeping in mind that there has to be some $a_0$ such that $I(a_0)$ is our
initial integral and some $a_1$ such that $I(a_1)$ is easy. Thinking along the lines of the latter,
we'd be fine if somehow the numerator went away.
\begin{align*}
I(a) = \int_0^1 \frac{\log(ax + 1)}{x^2 + 1} dx
\end{align*}
Then, we see that the initial integral is $I(1)$. Next, we take the derivative of $I(a)$ w.r.t. $a$:
\begin{align*}
\frac{\partial I(a)}{\partial a}
= \int_0^1 \frac{\partial}{\partial a} \frac{\log(ax + 1)}{x^2 + 1} dx
= \int_0^1 \frac{x}{(x^2 + 1)(ax + 1)} dx
\end{align*}
This has turned into a partial fractions problem. With a bit of linear algebra, we can break down
the rational polynomial into simpler components.
\begin{align*}
\frac{x}{(x^2 + 1)(ax + 1)}
= \frac{1}{a^2 + 1} \left( \frac{x}{x^2 + 1} + \frac{a}{x^2 + 1} - \frac{a}{ax + 1} \right)
\end{align*}
Each of these summands has simple antiderivatives.
\begin{align*}
\int_0^1 \frac{x}{(x^2 + 1)(ax + 1)} dx
&= \frac{1}{a^2 + 1} \left( \int_0^1 \frac{x}{x^2 + 1} dx
+ \int_0^1 \frac{a}{x^2 + 1} dx
- \int_0^1 \frac{a}{ax + 1} dx
\right) \\
&= \frac{1}{a^2 + 1} \left( \frac{1}{2} \int_0^1 \frac{2x}{x^2 + 1} dx
+ a \int_0^1 \frac{1}{x^2 + 1} dx
- \int_0^1 \frac{a}{ax + 1} dx
\right) \\
&= \frac{1}{a^2 + 1} \left( \frac{1}{2} \left[ \log(x^2 + 1) \right]_{x=0}^1
+ a \left[ \tan^{-1}(x) \right]_{x=0}^1
- \left[ \log(ax + 1) \right]_{x=0}^1
\right) \\
&= \frac{1}{a^2 + 1} \left( \frac{\log 2}{2}
+ \frac{\pi a}{4}
- \log(a + 1)
\right)
\end{align*}
Now, recall that all of this is the derivative of $I(a)$ w.r.t. $a$, so $I(a)$ is an antiderivative
of the above expression.
\begin{align*}
\frac{\partial I(a)}{\partial a}
&= \frac{1}{a^2 + 1} \left( \frac{\log 2}{2} + \frac{\pi a}{4} - \log(a + 1) \right)
\end{align*}
At this point, we just integrate. We choose our lower bound to be something where $I$ is trivial. In
this case, $I(0) = 0$.
\begin{align*}
I(a)
&= I(0) + \int_0^a \left[ \frac{\log 2}{2} \cdot \frac{1}{\alpha^2 + 1}
+ \frac{\pi}{8} \cdot \frac{2\alpha}{\alpha^2 + 1}
- \frac{\log(\alpha + 1)}{\alpha^2 + 1}
\right] d\alpha \\
&= 0 + \left[ \frac{\log 2}{2} \int_0^a \frac{1}{\alpha^2 + 1} d\alpha
+ \frac{\pi}{8} \int_0^a \frac{2a}{a^2 + 1} d\alpha
- \int_0^a \frac{\log(a + 1)}{a^2 + 1} d\alpha
\right] \\
&= \frac{\log 2}{2} \left[ \tan^{-1}(\alpha) \right]_{\alpha=0}^a
+ \frac{\pi}{8} \left[ \log(\alpha^2 + 1) \right]_{\alpha=0}^a
- \int_0^a \frac{\log(\alpha + 1)}{\alpha^2 + 1} d\alpha \\
&= \frac{\pi\log 2}{4}
- \int_0^a \frac{\log(\alpha + 1)}{\alpha^2 + 1} d\alpha \\
\end{align*}
Finally, we tie the knot, by setting $a = 1$.
\begin{align*}
I(1)
= \frac{\pi\log 2}{4}
- \int_0^1 \frac{\log(\alpha + 1)}{\alpha^2 + 1} d\alpha
= \frac{\pi\log 2}{4} - I(1)
\end{align*}
It follows that $I(1) = \int_0^1 \frac{\log(x + 1)}{x^2 + 1} dx = \frac{\pi \log 2}{8}$. \hfill
$\square$
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment