Created
January 19, 2023 16:33
-
-
Save harry-stark/ab7868252a8a23a6ea71b88bcffb0b3a to your computer and use it in GitHub Desktop.
```python convertFt.py --output_dir= --n_gpus=8```
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from transformers import GPTJForCausalLM, GPTJConfig | |
from transformers import CodeGenTokenizer, CodeGenForCausalLM | |
def cg2gptj(code_model): | |
cg_model = CodeGenForCausalLM.from_pretrained(code_model, torch_dtype="auto") | |
cg_config = cg_model.config | |
# Create empty GPTJ model | |
print('Creating empty GPTJ model') | |
config = GPTJConfig( | |
vocab_size=cg_config.vocab_size, | |
n_positions=cg_config.n_positions, | |
n_embd=cg_config.n_embd, | |
n_layer=cg_config.n_layer, | |
n_head=cg_config.n_head, | |
rotary_dim=cg_config.rotary_dim, | |
n_inner=cg_config.n_inner, | |
activation_function=cg_config.activation_function, | |
resid_pdrop=cg_config.resid_pdrop, | |
embd_pdrop=cg_config.embd_pdrop, | |
attn_pdrop=cg_config.attn_pdrop, | |
layer_norm_epsilon=cg_config.layer_norm_epsilon, | |
initializer_range=cg_config.initializer_range, | |
scale_attn_weights=cg_config.scale_attn_weights, | |
use_cache=cg_config.use_cache, | |
bos_token_id=cg_config.bos_token_id, | |
eos_token_id=cg_config.eos_token_id, | |
torch_dtype=cg_config.torch_dtype, | |
) | |
# Fix tokenizer type | |
config.tokenizer_class = 'CodeGenTokenizer' | |
gptj_model = GPTJForCausalLM(config) | |
embed_dim = config.n_embd | |
def replace(model, weights, name): | |
model.state_dict()[name].copy_(weights.detach()) | |
def replace_by_name(dest_model, src_model, old_name, new_name): | |
assert old_name in src_model.state_dict() | |
assert new_name in dest_model.state_dict() | |
replace(dest_model, src_model.state_dict()[old_name], new_name) | |
print('Converting...') | |
# Copy weights from CodeGen model | |
with torch.no_grad(): | |
cg_model.eval() | |
gptj_model.eval() | |
for name, param in cg_model.named_parameters(): | |
# print(f'Converting {name}') | |
# Handle the qkv weights separately because we need to split them | |
if 'qkv_proj' in name: | |
qkv_proj = param.detach().clone() | |
mp_num = 4 # number of cores on their TPU I guess? | |
local_dim = embed_dim // mp_num | |
# GPT-J and CodeGen slice up the qkv projection slightly differently. | |
# After a great deal of pain, I figured out that this permutation on | |
# the weights of the qkv_proj fixes it. | |
base_permutation = [0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11] | |
permutation = torch.cat([torch.arange(i*local_dim, (i+1)*local_dim) for i in base_permutation]) | |
# NB: we permute the *rows* here because the computation is xA.T | |
new_qkv_proj = qkv_proj[permutation,:] | |
# NB: the name QKV is misleading here; they are actually stored in | |
# the order QVK | |
query, value, key = torch.split(new_qkv_proj, embed_dim, dim=0) | |
replace(gptj_model, query, name.replace('qkv_proj', 'q_proj')) | |
replace(gptj_model, key, name.replace('qkv_proj', 'k_proj')) | |
replace(gptj_model, value, name.replace('qkv_proj', 'v_proj')) | |
else: | |
replace_by_name(gptj_model, cg_model, name, name) | |
return gptj_model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import os | |
from string import Template | |
from transformers import GPTJConfig, AutoTokenizer | |
import torch | |
from codegen_gptj_converter import cg2gptj | |
from gptj_ftconverter import split_and_convert_main | |
def round_up(x, multiple): | |
remainder = x % multiple | |
return x if remainder == 0 else x + multiple - remainder | |
SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) | |
CONFIG_TEMPLATE_PATH = os.path.join(SCRIPT_DIR, 'config_template.pbtxt') | |
# Generate a config file for a CodeGen model for use with Triton | |
parser = argparse.ArgumentParser('Convert SalesForce CodeGen model to GPT-J FT') | |
parser.add_argument('--code_model', default='Salesforce/codegen-350M-mono',help='which SalesForce model to convert') | |
parser.add_argument('--template', default=CONFIG_TEMPLATE_PATH, help='Path to the config template') | |
parser.add_argument('--tokenizer', default='Salesforce/codegen-16B-multi', help='Name or path to the tokenizer') | |
parser.add_argument('--output_dir', required=True, help='Where to store the converted model') | |
parser.add_argument('--n_gpus', '--num_gpus', help='Number of GPUs to use for inference', type=int, default=1) | |
parser.add_argument('--t_gpus','--train_gpus', help='Number of GPUs used for training', type=int, default=1) | |
parser.add_argument("--processes", "--p", type=int, help="How many processes to spawn for conversion (default: 4)", default=4) | |
parser.add_argument("--weight_data_type", type=str, default="fp32", choices=["fp32", "fp16"], help="output weight data type") | |
args = parser.parse_args() | |
# Vars we need to fill in: | |
# name | |
# tensor_para_size | |
# max_seq_len | |
# is_half | |
# head_num | |
# size_per_head | |
# inter_size | |
# vocab_size | |
# start_id | |
# end_id | |
# decoder_layers | |
# name | |
# rotary_embedding | |
# checkpoint_path | |
# Global options | |
gptj_model = cg2gptj(args.code_model) | |
config = gptj_model.config | |
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer) | |
max_seq_len = config.n_positions | |
is_half = '1' if config.torch_dtype == torch.float16 else '0' | |
# Read in the template config file | |
with open(args.template, 'r') as f: | |
template = Template(f.read()) | |
#from code_model | |
model_name = args.code_model.split('/')[-1] | |
version = '1' | |
params = {} | |
params['tensor_para_size'] = args.n_gpus | |
params['name'] = model_name | |
params['max_seq_len'] = max_seq_len | |
params['is_half'] = is_half | |
params['head_num'] = config.n_head | |
params['size_per_head'] = config.n_embd // config.n_head | |
params['inter_size'] = 4*config.n_embd | |
# Vocab size gets rounded up to a multiple of 1024 | |
params['vocab_size'] = round_up(tokenizer.vocab_size, 1024) | |
params['start_id'] = tokenizer.eos_token_id | |
params['end_id'] = tokenizer.eos_token_id | |
params['decoder_layers'] = config.n_layer | |
params['rotary_embedding'] = config.rotary_dim | |
# NOTE: this assumes that the model dir follows the format used by the other conversion scripts | |
model_dir = os.path.join(args.output_dir, f'{model_name}-{args.n_gpus}gpu') | |
os.makedirs(model_dir, exist_ok=True) | |
weights_path = os.path.join(model_dir, 'fastertransformer', f'{version}', f'{args.n_gpus}-gpu') | |
params['checkpoint_path'] = weights_path | |
triton_config = template.substitute(params) | |
assert '${' not in triton_config | |
# Make directory structure | |
os.makedirs(weights_path, exist_ok=True) | |
# Write config file | |
config_path = os.path.join(model_dir, 'fastertransformer', 'config.pbtxt') | |
with open(config_path, 'w') as f: | |
f.write(triton_config) | |
print('==========================================================') | |
print(f'Created config file for {model_name}') | |
print(f' Config: {config_path}') | |
# Convert the model weights | |
#args [gptj model] [weight path] [t-gpu] [num gpu] [fp16] | |
split_and_convert_main(gptj_model, weights_path, args.n_gpus, args.t_gpus, args.weight_data_type, args.processes) | |
print('==========================================================') | |
print(f'Converted weights for {model_name}') | |
print(f' Weights: {weights_path}') | |
print('==========================================================') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. | |
# Modified by Brendan Dolan-Gavitt, 2022 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import configparser | |
import multiprocessing | |
import numpy as np | |
from pathlib import Path | |
import torch | |
import os | |
import sys | |
from transformers import GPTJForCausalLM | |
# dir_path = os.path.dirname(os.path.realpath(__file__)) | |
# sys.path.append(dir_path + "/../../../..") | |
# sys.path.append(dir_path) | |
def get_weight_data_type(data_type): | |
if data_type == "fp32": | |
return np.float32 | |
elif data_type == "fp16": | |
return np.float16 | |
else: | |
assert False, f"Invalid weight data type {data_type}" | |
def split_and_convert_process_2(i,saved_dir,factor,key, val): | |
if key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or \ | |
key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or \ | |
key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or \ | |
key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1: | |
# shared weights, only need to convert the weights of rank 0 | |
if i == 0: | |
saved_path = saved_dir + "/model." + key + ".bin" | |
val.tofile(saved_path) | |
elif key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1: | |
split_vals = np.split(val, factor, axis=0) | |
for j in range(factor): | |
saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) | |
split_vals[j].tofile(saved_path) | |
elif key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1: | |
split_vals = np.split(val, factor, axis=-1) | |
for j in range(factor): | |
saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) | |
split_vals[j].tofile(saved_path) | |
elif key.find("attention.query_key_value.weight") != -1: | |
split_vals = np.split(val, factor, axis=-1) | |
for j in range(factor): | |
saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) | |
split_vals[j].tofile(saved_path) | |
else: | |
print("[ERROR] cannot find key '{}'".format(key)) | |
def split_and_convert_main(gptjmodel,weights_path,n_gpu,t_gpu,weight_data_type,processes): | |
saved_dir = weights_path | |
t_gpu_num = t_gpu | |
i_gpu_num = n_gpu | |
print(f"t_gpu_num: {t_gpu_num}, i_gpu_num: {i_gpu_num}") | |
assert(i_gpu_num % t_gpu_num == 0) | |
factor = (int)(i_gpu_num / t_gpu_num) | |
model = gptjmodel | |
if weight_data_type == "fp16": | |
model = model.half() | |
try: | |
config = configparser.ConfigParser() | |
config["gpt"] = {} | |
config["gpt"]["weights_path"] = saved_dir | |
config["gpt"]["trained_gpu_num"] = f"{t_gpu}" | |
config["gpt"]["inference_gpu_num"] = f"{n_gpu}" | |
config["gpt"]["processes"] = f"{processes}" | |
for k, v in vars(model.config).items(): | |
config["gpt"][k] = f"{v}" | |
config["gpt"]["weight_data_type"] = weight_data_type | |
with open((Path(saved_dir) / f"config.ini").as_posix(), 'w') as configfile: | |
config.write(configfile) | |
except Exception as e: | |
print(f"Fail to save the config in config.ini.") | |
print(e) | |
np_weight_data_type = get_weight_data_type(weight_data_type) | |
huggingface_model_name_pattern = [ | |
"ln_1.bias", | |
"ln_1.weight", | |
"attn.q_proj.weight", | |
"attn.out_proj.weight", | |
"mlp.fc_in.bias", | |
"mlp.fc_in.weight", | |
"mlp.fc_out.bias", | |
"mlp.fc_out.weight", | |
] | |
ft_model_name_pattern = [ | |
"input_layernorm.bias", | |
"input_layernorm.weight", | |
"attention.query_key_value.weight", | |
"attention.dense.weight", | |
"mlp.dense_h_to_4h.bias", | |
"mlp.dense_h_to_4h.weight", | |
"mlp.dense_4h_to_h.bias", | |
"mlp.dense_4h_to_h.weight", | |
] | |
#torch.multiprocessing.set_start_method("spawn") | |
#pool = multiprocessing.Pool(processes) | |
# with multiprocessing.Pool(processes) as pool: | |
for name, param in model.named_parameters(): | |
if name.find("weight") == -1 and name.find("bias") == -1: | |
continue | |
print(name) | |
if name == 'transformer.wte.weight': | |
param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wte.bin") | |
elif name == 'transformer.ln_f.bias': | |
param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.final_layernorm.bias.bin") | |
elif name == 'transformer.ln_f.weight': | |
param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.final_layernorm.weight.bin") | |
elif name == 'lm_head.weight': | |
param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.lm_head.weight.bin") | |
elif name == 'lm_head.bias': | |
param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.lm_head.bias.bin") | |
else: | |
for i in range(len(huggingface_model_name_pattern)): | |
if name.find(huggingface_model_name_pattern[i]) != -1: | |
# Special case for QKV weights | |
if name.find("attn.q_proj.weight") != -1: | |
layer = name.split('.')[2] | |
base_k = f'transformer.h.{layer}.' | |
w = model.state_dict() | |
QKV_w = torch.stack([ | |
w[base_k + "attn.q_proj.weight"], | |
w[base_k + "attn.k_proj.weight"], | |
w[base_k + "attn.v_proj.weight"], | |
]) # [qkv, n_heads * dim_head, latent_space] | |
QKV_w = QKV_w.permute(2, 0, 1) | |
weights = QKV_w.detach().cpu().numpy().astype(np_weight_data_type) | |
else: | |
weights = param.detach().cpu().numpy().astype(np_weight_data_type) | |
# Some weights need to be transposed | |
if name.find("mlp.fc_in.weight") != -1 or \ | |
name.find("mlp.fc_out.weight") != -1 or \ | |
name.find("attn.out_proj.weight") != -1: | |
weights = weights.T | |
new_name = name.replace("transformer.h.", "layers.").replace(huggingface_model_name_pattern[i], ft_model_name_pattern[i]) | |
#split_and_convert_process_2(0, saved_dir, factor, new_name, weights) | |
pool.map(split_and_convert_process_2,[(0, saved_dir, factor, new_name, weights)] ) | |
pool.close() | |
pool.join() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment