Created
July 22, 2018 05:15
-
-
Save harryhare/23171eb7f6fdf5ce9fe320d542210a18 to your computer and use it in GitHub Desktop.
entropy and length of huffman coding
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
def entropy(a): | |
s=sum(a) | |
e=0 | |
for x in a: | |
p=x/s | |
e+=(p)*math.log2(p) | |
return -e | |
def test_entropy(): | |
assert entropy([1,1]) == 1 | |
assert entropy([1,1,2]) == 1.5 | |
print("pass") | |
def huffman_len(a): | |
s=sum(a) | |
if(len(a)<=1): | |
return 0 | |
a=sorted(a,reverse=True) | |
x=a.pop()+a.pop() | |
a.append(x) | |
return x/s+huffman_len(a) | |
def test_huffman_len(): | |
assert huffman_len([1,1]) == 1 | |
assert huffman_len([1,1,2]) == 1.5 | |
print("pass") | |
test_entropy() | |
test_huffman_len() | |
a=[1,1,2,4,8,1,1,2,4,8] | |
print(huffman_len(a)) | |
print(entropy(a)) | |
a=[1,1,1,1,1,1,1,2] | |
print(huffman_len(a)) | |
print(entropy(a)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment