Last active
June 27, 2018 13:24
-
-
Save harshilpatel312/521ebe35f0346a5b87aa49a7db7efecf to your computer and use it in GitHub Desktop.
Test script for TF's Object Detection API
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
# NOTE: PUT THIS FILE IN models/research/object_detection/ | |
# Object Detection Demo | |
import numpy as np | |
import os | |
import six.moves.urllib as urllib | |
import sys | |
import tarfile | |
import tensorflow as tf | |
import zipfile | |
from collections import defaultdict | |
from io import StringIO | |
from matplotlib import pyplot as plt | |
from PIL import Image | |
from tqdm import tqdm | |
import cv2 | |
import argparse | |
argparser = argparse.ArgumentParser(description='Test script for models') | |
argparser.add_argument('-i','--input', | |
help='path to an image or a video (mp4 format)') | |
argparser.add_argument('-n','--num_classes', | |
help='number of classes in your dataset') | |
argparser.add_argument('-m','--modelname', | |
help='name of generated detection graph') | |
argparser.add_argument('-l','--labelmap', | |
help='name of label map (.pbtxt)') | |
argparser.add_argument('-o','--output_video', | |
help='name of output video', | |
default='out.mp4') | |
args = argparser.parse_args() | |
MODEL_INPUT = args.input | |
MODEL_NAME = args.modelname | |
LABEL_MAP = args.labelmap | |
NUM_CLASSES = int(args.num_classes) | |
OUTPUT_VIDEO = args.output_video | |
# start the input feed | |
cap = cv2.VideoCapture(MODEL_INPUT) | |
# This is needed since the notebook is stored in the object_detection folder. | |
sys.path.append("..") | |
from object_detection.utils import ops as utils_ops | |
if tf.__version__ < '1.4.0': | |
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') | |
## Object detection imports | |
# Here are the imports from the object detection module. | |
from utils import label_map_util | |
from utils import visualization_utils as vis_util | |
# Model preparation | |
# Path to frozen detection graph. This is the actual model that is used for the object detection. | |
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' | |
# List of the strings that is used to add correct label for each box. | |
PATH_TO_LABELS = os.path.join('data', LABEL_MAP) | |
## Load a (frozen) Tensorflow model into memory. | |
detection_graph = tf.Graph() | |
with detection_graph.as_default(): | |
od_graph_def = tf.GraphDef() | |
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: | |
serialized_graph = fid.read() | |
od_graph_def.ParseFromString(serialized_graph) | |
tf.import_graph_def(od_graph_def, name='') | |
## Loading label map | |
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine | |
label_map = label_map_util.load_labelmap(PATH_TO_LABELS) | |
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) | |
category_index = label_map_util.create_category_index(categories) | |
# # Detection | |
# Size, in inches, of the output images. | |
IMAGE_SIZE = (12, 8) | |
with detection_graph.as_default(): | |
with tf.Session(graph=detection_graph) as sess: | |
# Definite input and output Tensors for detection_graph | |
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') | |
# Each box represents a part of the image where a particular object was detected. | |
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') | |
# Each score represent how level of confidence for each of the objects. | |
# Score is shown on the result image, together with the class label. | |
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') | |
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') | |
num_detections = detection_graph.get_tensor_by_name('num_detections:0') | |
nb_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
frame_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
video_writer = cv2.VideoWriter(OUTPUT_VIDEO, | |
cv2.VideoWriter_fourcc(*'MPEG'), | |
50.0, | |
(frame_w, frame_h)) | |
for i in tqdm(list(range(nb_frames))): | |
ret, image_np = cap.read() | |
if ret: | |
# Expand dimensions since the model expects images to have shape: [1, None, None, 3] | |
image_np_expanded = np.expand_dims(image_np, axis=0) | |
# Actual detection. | |
(boxes, scores, classes, num) = sess.run( | |
[detection_boxes, detection_scores, detection_classes, num_detections], | |
feed_dict={image_tensor: image_np_expanded}) | |
# Visualization of the results of a detection. | |
vis_util.visualize_boxes_and_labels_on_image_array( | |
image_np, | |
np.squeeze(boxes), | |
np.squeeze(classes).astype(np.int32), | |
np.squeeze(scores), | |
category_index, | |
use_normalized_coordinates=True, | |
min_score_thresh=0.5, | |
line_thickness=10) | |
video_writer.write(np.uint8(image_np)) | |
cap.release() | |
video_writer.release() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment