Created
August 22, 2024 10:44
-
-
Save hartmannr76/20cfad88e070068b8cc2a87e30d5335a to your computer and use it in GitHub Desktop.
True/False question answering from Gemma 2 with probabilities
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import numpy as np | |
torch.set_grad_enabled(False) | |
model_path = "google/gemma-2-2b-it" | |
access_token = '<your_token>' | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_safetensors=True, token=access_token) | |
model = AutoModelForCausalLM.from_pretrained(model_path, use_safetensors=True, token=access_token, device_map="auto") | |
# Should match for your model | |
USER_CHAT_TEMPLATE = "<start_of_turn>user\n{prompt}<end_of_turn><eos>\n" | |
MODEL_CHAT_TEMPLATE = "<start_of_turn>model\n{prompt}<end_of_turn><eos>\n" | |
inputs = tokenizer.encode(( | |
USER_CHAT_TEMPLATE.format(prompt='Answer this question with either True or False. Josh is a human name.') | |
+ MODEL_CHAT_TEMPLATE.format(prompt='True') | |
+ USER_CHAT_TEMPLATE.format(prompt='Answer this question with either True or False. A hairbrush is an animal.') | |
+ "<start_of_turn>model\n" | |
), return_tensors="pt").to("cuda") | |
alt_sequences = tokenizer.batch_encode_plus(['True', 'False'], add_special_tokens=False, return_tensors="pt").to("cuda") | |
batch_token_ids = alt_sequences["input_ids"] | |
outputs = model.generate(inputs, max_new_tokens=256, num_beams=len(batch_token_ids), return_dict_in_generate=True, output_scores=True) | |
transition_scores = model.compute_transition_scores( | |
batch_token_ids, outputs.scores | |
) | |
for tok, score in zip(batch_token_ids, transition_scores): | |
# | token | token string | logits | probability | |
print(f"| {tok[0]:5d} | {tokenizer.decode(tok[0]):8s} | {score[0].cpu():.4f} | {np.exp(score[0].cpu()):.2%}") | |
# Example output | |
# | 5036 | True | -6.8411 | 0.11% | |
# | 8393 | False | -0.0013 | 99.87% |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment