Created
December 2, 2013 13:31
-
-
Save haruyama/7749450 to your computer and use it in GitHub Desktop.
CRF with ruby based on https://gist.github.com/neubig/7352832
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env ruby | |
# -*- encoding: utf-8 -*- | |
L2_COEFF = 1 | |
RATE = 10 | |
TAGIDS = Hash.new { |hash, key| hash[key] = hash.size } | |
TAGIDS['<S>'] = 0 | |
def dot(x, y) | |
x.reduce(0.0) do |a, e| | |
k, v = e | |
a + (y.key?(k) ? v * y[k] : 0) | |
end | |
end | |
def add(a, b) | |
t = Hash.new(0) | |
t.merge(a).merge(b) { |k, sv, ov| sv + ov } | |
end | |
def logsumexp(x) | |
k = x.max | |
Math.log(x.reduce(0.0) do |a, e| | |
a + Math.exp(e - k) | |
end) + k | |
end | |
def calc_feat(x, i, l, r) | |
{ ['T', l, r] => 1, ['E', r, x[i]] => 1 } | |
end | |
def calc_e(x, i, l, r, w, e_prob) | |
e_prob[[i, l, r]] = dot(calc_feat(x, i, l, r), w) unless e_prob.key?([i, l, r]) | |
e_prob[[i, l, r]] | |
end | |
def calc_f(x, i, l, w, e, f) | |
unless f.key?([i, l]) | |
if i == 0 | |
f[[i, 0]] = 0 | |
else | |
prev_states = (i == 1 ? [0] : 1...TAGIDS.size) | |
f[[i, l]] = logsumexp( | |
prev_states.map { |k| calc_f(x, i - 1, k, w, e, f) + calc_e(x, i, k, l, w, e) } | |
) | |
end | |
end | |
f[[i, l]] | |
end | |
def calc_b(x, i, r, w, e, b) | |
unless b.key?([i, r]) | |
if i == x.size - 1 | |
b[[i, 0]] = 0 | |
else | |
prev_states = (i == x.size - 2 ? [0] : 1...TAGIDS.size) | |
b[[i, r]] = logsumexp( | |
prev_states.map { |k| calc_b(x, i + 1, k, w, e, b) + calc_e(x, i, r, k, w, e) } | |
) | |
end | |
end | |
b[[i, r]] | |
end | |
def calc_gradient(x, y, w) | |
f_prob = { [0, 0] => 0 } | |
b_prob = { [x.size - 1, 0] => 0 } | |
e_prob = {} | |
grad = Hash.new(0) | |
(1...x.size).each do |i| | |
calc_feat(x, i, y[i - 1], y[i]).each { |k, v| grad[k] += v } | |
end | |
norm = calc_b(x, 0, 0, w, e_prob, b_prob) | |
lik = dot(grad, w) - norm | |
(1...x.size).each do |i| | |
(i == 1 ? [0] : 1...TAGIDS.size).each do |l| | |
(i == x.size - 1 ? [0] : 1...TAGIDS.size).each do |r| | |
p = Math.exp(calc_e(x, i, l, r, w, e_prob) + | |
calc_b(x, i, r, w, e_prob, b_prob) + | |
calc_f(x, i - 1, l, w, e_prob, f_prob) - | |
norm) | |
calc_feat(x, i, l, r).each { |k, v| grad[k] -= v * p } | |
end | |
end | |
end | |
[grad, lik] | |
end | |
corpus = [] | |
ARGF.each do |line| | |
words = ['<S>'] | |
tags = [0] | |
line.strip! | |
line.split(' ').each do |w_t| | |
w, t = w_t.split('_') | |
words << w | |
tags << TAGIDS[t] | |
end | |
words << '<S>' | |
tags << 0 | |
corpus << [words, tags] | |
end | |
w = Hash.new(0) | |
(1..50).each do |iternum| | |
grad = Hash.new(0) | |
reg_lik = 0 | |
w.each do |k, v| | |
grad[k] -= 2 * v * L2_COEFF | |
reg_lik -= v * v * L2_COEFF | |
end | |
lik = 0 | |
corpus.each do |x, y| | |
my_grad, my_lik = calc_gradient(x, y, w) | |
my_grad.each { |k, v| grad[k] += v } | |
lik += my_lik | |
end | |
l1 = grad.values.reduce(0.0) { |a, e| a + e.abs } | |
STDERR.print "Iter %f likelihood: lik=%f, reg=%f, reg+lik=%f gradL1=%f\n" % [iternum, lik, reg_lik, lik + reg_lik, l1] | |
grad.each { |k, v| w[k] += v / l1 * RATE } | |
end | |
strs = {} | |
TAGIDS.each { |k, v| strs[v] = k } | |
w.sort_by { |k, v| v }.each do |k, v| | |
if k[0] == 'E' | |
print "%s %s %s\t%f\n" % [k[0], strs[k[1]], k[2], v] | |
else | |
print "%s %s %s\t%f\n" % [k[0], strs[k[1]], strs[k[2]], v] | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment