Created
January 17, 2017 13:23
-
-
Save harveyslash/33c4c1478436aab75bfe5adfba1fb7fd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
vgg_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32).reshape((3,1,1)) | |
def addConvBlock(model, layers, filters): | |
for i in range(layers): | |
model.add(ZeroPadding2D((1, 1))) | |
model.add(Convolution2D(filters, 3, 3, activation='relu')) | |
model.add(MaxPooling2D((2, 2), strides=(2, 2))) | |
def addFCBlock(model): | |
model.add(Dense(4096, activation='relu')) | |
# model.add(BatchNormalization()) | |
model.add(Dropout(0.5)) | |
def create(): | |
model = Sequential() | |
model.add(Lambda(vgg_preprocess, input_shape=(3,224,224))) | |
addConvBlock(model,2, 64) | |
addConvBlock(model,2, 128) | |
addConvBlock(model,3, 256) | |
addConvBlock(model,3, 512) | |
addConvBlock(model,3, 512) | |
model.add(Flatten()) | |
addFCBlock(model) | |
addFCBlock(model) | |
model.add(Dense(1000, activation='softmax')) | |
model.load_weights("/home/harsh/.keras/models/vgg16.h5") | |
return model | |
def vgg_preprocess(x): | |
x = x - vgg_mean | |
return x[:, ::-1] # reverse axis rgb->bgr |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment