Created
November 24, 2016 18:51
-
-
Save harveyslash/5c98f9fdab0d53a2a48f477a52d8588d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def shuffle_in_unison(a, b): | |
assert len(a) == len(b) | |
shuffled_a = np.empty(a.shape, dtype=a.dtype) | |
shuffled_b = np.empty(b.shape, dtype=b.dtype) | |
permutation = np.random.permutation(len(a)) | |
for old_index, new_index in enumerate(permutation): | |
shuffled_a[new_index] = a[old_index] | |
shuffled_b[new_index] = b[old_index] | |
return shuffled_a, shuffled_b | |
##prepare for calendars | |
filelist = glob.glob('businessResized/*.jpg') | |
images = np.zeros([len(filelist), 70,52, 3], dtype=int) | |
for i in range(0, len(filelist)): | |
images[i] = misc.imread(filelist[i],mode= 'RGB') | |
XComplete = images | |
YComplete = np.zeros(shape=(len(filelist), 1), dtype='int32') | |
################prepare for business | |
filelist = glob.glob('horrorResized/*.jpg') | |
images = np.zeros([len(filelist), 70,52, 3], dtype=int) | |
for i in range(0, len(filelist)): | |
images[i] = misc.imread(filelist[i], mode ='RGB') | |
XComplete = np.concatenate((XComplete, images)) | |
YComplete = np.concatenate((YComplete, np.ones(shape=(len(filelist), 1), dtype='int32'))) | |
YComplete = YComplete.reshape((len(YComplete))) | |
YComplete = np_utils.to_categorical(YComplete, 2) | |
print(type(YComplete)) | |
print(YComplete.shape) | |
print("printing y complete", YComplete) | |
print(np.unique(YComplete)) | |
XComplete, YComplete = shuffle_in_unison(XComplete, YComplete) | |
# | |
# for i in range(10): | |
# value = random.randint(0, len(YComplete)) | |
# plt.imshow(misc.toimage(XComplete[value])) | |
# print(YComplete[value]) | |
# plt.show() | |
x_train, x_test, y_train, y_test = train_test_split(XComplete, YComplete, test_size=0.1) | |
print(len(x_train)) | |
model = Sequential() | |
model.add(Convolution2D(32, 5, 5, border_mode='same', input_shape=(70,52, 3))) | |
model.add(Activation("relu")) | |
model.add(MaxPooling2D(pool_size=(2,2))) | |
model.add(Convolution2D(64, 5, 5, border_mode='same')) | |
model.add(Activation("relu")) | |
model.add(MaxPooling2D(pool_size=(2,2))) | |
# model.add(Convolution2D(128, 7, 7, border_mode='same')) | |
# model.add(Activation("relu")) | |
# model.add(MaxPooling2D(pool_size=(2,2))) | |
# model.add(Convolution2D(64, 10, 10, border_mode='same')) | |
# model.add(Activation("relu")) | |
# model.add(MaxPooling2D(pool_size=(2,2))) | |
# model.add(Convolution2D(16, 8, 8, border_mode='same')) | |
# model.add(Activation("relu")) | |
# | |
# model.add(Convolution2D(8, 4, 4, border_mode='same')) | |
# model.add(Activation("relu")) | |
model.add(Flatten()) | |
model.add(Dense(output_dim=512)) | |
model.add(Activation("relu")) | |
model.add(Dense(output_dim=2)) | |
model.add(Activation("softmax")) | |
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) | |
model.fit(x_train, y_train, nb_epoch=70, batch_size=500,verbose=1) | |
score = model.evaluate(x_test, y_test, batch_size=16) | |
print('Test score:', score[0]) | |
print('Test accuracy:', score[1]) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment