Skip to content

Instantly share code, notes, and snippets.

@harveyslash
Created July 20, 2017 16:46
Show Gist options
  • Save harveyslash/5f194b0cba7bae6d6e5eb002391e1b3b to your computer and use it in GitHub Desktop.
Save harveyslash/5f194b0cba7bae6d6e5eb002391e1b3b to your computer and use it in GitHub Desktop.
folder_dataset_test = dset.ImageFolder(root=Config.testing_dir)
siamese_dataset = SiameseNetworkDataset(imageFolderDataset=folder_dataset_test,
transform=transforms.Compose([transforms.Scale((100,100)),
transforms.ToTensor()
])
,should_invert=False)
test_dataloader = DataLoader(siamese_dataset,num_workers=6,batch_size=1,shuffle=True)
dataiter = iter(test_dataloader)
x0,_,_ = next(dataiter)
for i in range(10):
_,x1,label2 = next(dataiter)
concatenated = torch.cat((x0,x1),0)
output1,output2 = net(Variable(x0).cuda(),Variable(x1).cuda())
euclidean_distance = F.pairwise_distance(output1, output2)
imshow(torchvision.utils.make_grid(concatenated),'Dissimilarity: {:.2f}'.format(euclidean_distance.cpu().data.numpy()[0][0]))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment