Skip to content

Instantly share code, notes, and snippets.

@time_analysis_controller.route('/time/question/track', methods=['POST'])
@login_required
def update_question_time():
"""
Update the time spent on a question using the 'heartbeat' signal.
The question attempt is fetched based on the current user and question id.
And a random number between 1 and 5 is added to the time spent.
The update is added to the total time spent for that question attempt
:return: 404 if the question attempt didnt exist, 200 if time was successfully updated
def get_highest_score(test_id):
test_attempts = db.session.query(TestAttempt).filter_by(test_id=test_id)
scores = []
if test_attempts.count() < 1:
return {'max_score': 0}
for each in test_attempts:
user_id = each.user_id
test_id = each.test_id
if each.is_complete:
k = get_college_test_attempt_score(test_id, user_id)['score']
def get_highest_score(test_id):
test_attempts = db.session.query(TestAttempt).filter_by(test_id=test_id)
scores = []
if test_attempts.count() < 1:
return {'max_score': 0}
for each in test_attempts:
user_id = each.user_id
test_id = each.test_id
if each.is_complete:
k = get_college_test_attempt_score(test_id, user_id)['score']
import React, {PropTypes, Component} from 'react';
import * as action from '../actions/action';
import $ from 'jquery';
import {connect} from 'react-redux';
import {bindActionCreators} from 'redux';
import UserPanel from './UserPanel';
import Navlink from './Navlink';
import Footer from './Footer';
import UserMenu from './UserMenu';
folder_dataset_test = dset.ImageFolder(root=Config.testing_dir)
siamese_dataset = SiameseNetworkDataset(imageFolderDataset=folder_dataset_test,
transform=transforms.Compose([transforms.Scale((100,100)),
transforms.ToTensor()
])
,should_invert=False)
test_dataloader = DataLoader(siamese_dataset,num_workers=6,batch_size=1,shuffle=True)
dataiter = iter(test_dataloader)
x0,_,_ = next(dataiter)
net = SiameseNetwork().cuda()
criterion = ContrastiveLoss()
optimizer = optim.Adam(net.parameters(),lr = 0.0005 )
counter = []
loss_history = []
iteration_number= 0
for epoch in range(0,Config.train_number_epochs):
for i, data in enumerate(train_dataloader,0):
class SiameseNetworkDataset(Dataset):
def __init__(self,imageFolderDataset,transform=None,should_invert=True):
self.imageFolderDataset = imageFolderDataset
self.transform = transform
self.should_invert = should_invert
def __getitem__(self,index):
img0_tuple = random.choice(self.imageFolderDataset.imgs)
#we need to make sure approx 50% of images are in the same class
class ContrastiveLoss(torch.nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
"""
def __init__(self, margin=2.0):
super(ContrastiveLoss, self).__init__()
self.margin = margin
class SiameseNetwork(nn.Module):
def __init__(self):
super(SiameseNetwork, self).__init__()
self.cnn1 = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(1, 4, kernel_size=3),
nn.ReLU(inplace=True),
nn.BatchNorm2d(4),
nn.Dropout2d(p=.2),
import java.time.Instant;
public class WarpCLI {
private static final long START_EPOCH = 885709023L;
public WarpCLI() {}
public static void main(String[] paramArrayOfString) { Instant localInstant1 = Instant.now();
Instant localInstant2 = Instant.ofEpochSecond(885709023L);
Instant localInstant3 = localInstant2.plus(1L, java.time.temporal.ChronoUnit.DAYS);