Created
February 22, 2020 02:21
-
-
Save hasandiwan/6c8335c27edc615af78d4595765b0d86 to your computer and use it in GitHub Desktop.
How to predict the Market using hd1-units.herokuapp.com
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import requests | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description="Get the next day's predicted market close and tolerance range for any US-listed equity") | |
parser.add_argument('SYMBOL', help='symbol', action='store', type=str) | |
parsed = parser.parse_args() | |
URL = 'https://hd1-units.herokuapp.com/stock' | |
params = {'sym': parsed.SYMBOL} | |
resp = requests.get(URL, params=params).json() | |
#[prices.update({r : resp[r]}) for r in resp if ' Close' in r else del(r)] | |
prices = {} | |
for r in resp: | |
if not r.endswith('Close'): | |
continue | |
prices[r[:r.index(' ')]] = resp[r] | |
csv = ','.join(prices.values()) | |
stats_response = requests.post('https://hd1-units.herokuapp.com/stat', data=csv, headers={'Content-type': 'text/csv'}).json() | |
print(f'''Next {parsed.SYMBOL} close will be between {stats_response['lowerQuartile']} and {stats_response['upperQuartile']} with a predicted value of {stats_response['predictionNext']}.''') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment