Created
April 10, 2012 12:52
-
-
Save hasayvaz/2351157 to your computer and use it in GitHub Desktop.
sayısal çözümleme ödevi-secant, newton, bisection ve regular falsi yöntemi kullanarak denklem kökü bulma.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include<stdio.h> | |
#include<math.h> | |
#define BOYUT 50 | |
#define TUREV_K (double)0.0000001 | |
double f(double x) | |
{ | |
return 3 * x * x + 12 * x + 7; | |
//return x * x * x - 5 * x * x - 2 * x + 10; | |
} | |
double turev(double x, double(*f)(double), double k) | |
{ | |
return (double)((f(x + k) - f(x))/k); | |
} | |
double newton (double x0, double eps) | |
{ | |
int i; | |
double f(double); | |
double x[BOYUT]; | |
for (x[0] = x0, i = 0;;i++) { | |
x[i+1] = x[i] - (f(x[i])/turev(x[i], f, TUREV_K)); | |
if (fabs(x[i+1] - x[i]) < eps) | |
break; | |
} | |
return x[i+1]; | |
} | |
double secant(double x0, double x1, double eps) | |
{ | |
int i; | |
double f(double); | |
double x[BOYUT]; | |
for (x[0] = x0, x[1] = x1, i = 0;;i++) { | |
x[i+2] = x[i+1] - (f(x[i+1]) * (x[i+1] - x[i]))/(f(x[i+1]) - f(x[i])); | |
if (fabs(x[i+2] - x[i+1]) < eps) | |
break; | |
} | |
return x[i+2]; | |
} | |
double bisection(double a, double b, double eps) | |
{ | |
double c, f(double); | |
if (f(a) * f(b) < 0) { | |
c = (a + b)/2; | |
while (!(f(c) == 0)) { | |
c = (a + b)/2; | |
if (f(a) * f(b) < 0) { | |
b = c; | |
} | |
else { | |
a = c; | |
} | |
if (f(c) < eps) | |
break; | |
} | |
} | |
return c; | |
} | |
double regfal(double a, double b, double eps) | |
{ | |
int i; | |
double f(double); | |
double x[BOYUT]; | |
if (f(a) * f(b) < 0) { | |
for (i = 0;;i++) { | |
x[i] = (a * f(b) - b * f(a))/ (f(b) - f(a)); | |
if (f(a) * f(x[i]) < 0) | |
b = x[i]; | |
else | |
a = x[i]; | |
if ((x[i] - x[i-1]) < eps) | |
break; | |
} | |
} | |
return x[i]; | |
} | |
void main(void) | |
{ | |
double a = 1, b = 3, x0 = 4, x1 = 1; | |
double eps = pow(10, -5); | |
//printf("bisec_kok = %.5f\n", bisection(a, b, eps)); | |
//printf("regfal_kok = %.5f\n", regfal(a, b, eps)); | |
//printf("newton_kok = %.5f\n", newton(x0, eps)); | |
//printf("secant_kok = %.5f\n", secant(x0, x1, eps)); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment