Created
January 9, 2020 09:40
-
-
Save hasithsura/5613a93aa68196cbcda6da23782f4e19 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
learning_rate = 2e-4 | |
optimizer = optim.Adam(resnet_model.parameters(), lr=learning_rate) | |
epochs = 50 | |
loss_fn = nn.CrossEntropyLoss() | |
resnet_train_losses=[] | |
resnet_valid_losses=[] | |
def lr_decay(optimizer, epoch): | |
if epoch%10==0: | |
new_lr = learning_rate / (10**(epoch//10)) | |
optimizer = setlr(optimizer, new_lr) | |
print(f'Changed learning rate to {new_lr}') | |
return optimizer | |
def train(model, loss_fn, train_loader, valid_loader, epochs, optimizer, train_losses, valid_losses, change_lr=None): | |
for epoch in tqdm(range(1,epochs+1)): | |
model.train() | |
batch_losses=[] | |
if change_lr: | |
optimizer = change_lr(optimizer, epoch) | |
for i, data in enumerate(train_loader): | |
x, y = data | |
optimizer.zero_grad() | |
x = x.to(device, dtype=torch.float32) | |
y = y.to(device, dtype=torch.long) | |
y_hat = model(x) | |
loss = loss_fn(y_hat, y) | |
loss.backward() | |
batch_losses.append(loss.item()) | |
optimizer.step() | |
train_losses.append(batch_losses) | |
print(f'Epoch - {epoch} Train-Loss : {np.mean(train_losses[-1])}') | |
model.eval() | |
batch_losses=[] | |
trace_y = [] | |
trace_yhat = [] | |
for i, data in enumerate(valid_loader): | |
x, y = data | |
x = x.to(device, dtype=torch.float32) | |
y = y.to(device, dtype=torch.long) | |
y_hat = model(x) | |
loss = loss_fn(y_hat, y) | |
trace_y.append(y.cpu().detach().numpy()) | |
trace_yhat.append(y_hat.cpu().detach().numpy()) | |
batch_losses.append(loss.item()) | |
valid_losses.append(batch_losses) | |
trace_y = np.concatenate(trace_y) | |
trace_yhat = np.concatenate(trace_yhat) | |
accuracy = np.mean(trace_yhat.argmax(axis=1)==trace_y) | |
print(f'Epoch - {epoch} Valid-Loss : {np.mean(valid_losses[-1])} Valid-Accuracy : {accuracy}') | |
train(resnet_model, loss_fn, train_loader, valid_loader, epochs, optimizer, resnet_train_losses, resnet_valid_losses, lr_decay) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment