Skip to content

Instantly share code, notes, and snippets.

@haxiomic
Last active September 28, 2023 00:43
Show Gist options
  • Save haxiomic/7453f867b396eee1af599633e03816b3 to your computer and use it in GitHub Desktop.
Save haxiomic/7453f867b396eee1af599633e03816b3 to your computer and use it in GitHub Desktop.
Time-varying curl noise implementation, based on https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph2007-curlnoise.pdf
// https://www.shadertoy.com/view/dlfXDN
// 2023 myth0genesis
// 4D Simplex Noise Gradient
// I saw that Stefan Gustavson didn't seem to have published any shader
// with an analytic solution for the gradients of his variant
// of 4D simplex noise, so I thought I'd try solving it myself
// and publish it here for anyone who finds it useful.
// Compares the analytic solution to the numerically approximated one (for a sanity check)
// and shows the results of all four derivatives with respect to each dimension.
// Top : Analytic gradient | Bottom: Forward differences approximated gradient
// Left: Gradient w/ respect to p.xyz | Right : Derivative w/ respect to p.w
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
float mod289(float x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x) {
return mod289(((x * 34.0) + 10.0) * x);
}
float permute(float x) {
return mod289(((x * 34.0) + 10.0) * x);
}
vec4 taylorInvSqrt(vec4 r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
float taylorInvSqrt(float r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
vec4 grad4(float j, vec4 ip) {
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p, s;
p.xyz = floor(fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz * 2.0 - 1.0) * s.www;
return p;
}
// Stevan Gustavson's 4D simplex noise: https://github.com/stegu/webgl-noise/blob/master/src/noise4D.glsl
// I left the scalar output intact for anyone who just wants
// to copy and paste it to use for a project.
// (sqrt(5) - 1)/4 = F4
#define F4 0.309016994374947451
float snoise(vec4 v, out vec4 grad) {
const vec4 C = vec4( 0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958); // -1 + 4 * G4
vec4 i = floor(v + dot(v, vec4(F4)));
vec4 x0 = v - i + dot(i, C.xxxx);
vec4 i0;
vec3 isX = step(x0.yzw, x0.xxx);
vec3 isYZ = step(x0.zww, x0.yyz);
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
vec4 i3 = clamp(i0, 0.0, 1.0 );
vec4 i2 = clamp(i0 - 1.0, 0.0, 1.0 );
vec4 i1 = clamp(i0 - 2.0, 0.0, 1.0 );
vec4 x1 = x0 - i1 + C.xxxx;
vec4 x2 = x0 - i2 + C.yyyy;
vec4 x3 = x0 - i3 + C.zzzz;
vec4 x4 = x0 + C.wwww;
i = mod289(i);
float j0 = permute(permute(permute(permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute(permute(permute(permute(
i.w + vec4(i1.w, i2.w, i3.w, 1.0))
+ i.z + vec4(i1.z, i2.z, i3.z, 1.0))
+ i.y + vec4(i1.y, i2.y, i3.y, 1.0))
+ i.x + vec4(i1.x, i2.x, i3.x, 1.0));
vec4 ip = vec4(1.0 / 294.0, 1.0 / 49.0, 1.0 / 7.0, 0.0);
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
vec4 norm = taylorInvSqrt(vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4, p4));
vec3 m0 = max(0.6 - vec3(dot(x0, x0), dot(x1, x1), dot(x2, x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3, x3), dot(x4, x4) ), 0.0);
vec3 m02 = m0 * m0;
vec2 m12 = m1 * m1;
vec3 m04 = m02 * m02;
vec2 m14 = m12 * m12;
vec3 pdotx0 = vec3(dot(p0, x0), dot(p1, x1), dot(p2, x2));
vec2 pdotx1 = vec2(dot(p3, x3), dot(p4, x4));
vec3 temp0 = m02 * m0 * pdotx0;
vec2 temp1 = m12 * m1 * pdotx1;
// Here the gradient is calculated
grad = -8.0 * (temp0.x * x0 + temp0.y * x1 + temp0.z * x2 + temp1.x * x3 + temp1.y * x4);
grad += m04.x * p0 + m04.y * p1 + m04.z * p2 + m14.x * p3 + m14.y * p4;
// There's probably an exact factor the result can be
// multiplied by to get a range of -1.0 to 1.0,
// but I didn't know how to find it, so I just normalized the vector
grad = normalize(grad);
return 49.0 * (dot(m04, pdotx0) + dot(m14, pdotx1));
}
@haxiomic
Copy link
Author

haxiomic commented Jun 22, 2020

I created this because all public implementations I came across did not correctly compute the curl of the vector field and had directional biasing on flow

Additionally, this implementation uses analytic gradients (whereas most use finite differences in the 3D case) which leads to better performance. Thanks to Mark A. Ropper (@Markyparky56)!

@Markyparky56
Copy link

Very cool! Feel free to tag me in anything you use this with, would love to see what you can use this for! You could also forward this to stegu, he might like to see this in action as well.

@Markyparky56
Copy link

Potential typo on line 23? You set gz twice, instead of gx?

@haxiomic
Copy link
Author

haxiomic commented Jun 23, 2020

Wow great spotting @Markyparky56! That's fascinating, I was so happy with the look of the curl noise wind flow in the project I am developing but this whole time the noise field had a major bias

After correcting it does seem a more physically realistic. Thank you :)

And thanks for your work on snoise 4D!

@haxiomic
Copy link
Author

What's the best way to dm you? Want to send a link

@Markyparky56
Copy link

Feel free to drop me a DM on twitter, I think we're following each other now so my DMs should be open to you.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment