Skip to content

Instantly share code, notes, and snippets.

@hdary85
Last active April 7, 2025 14:45
Show Gist options
  • Save hdary85/a3ec41fb1f171ba272512c5cb05f31a1 to your computer and use it in GitHub Desktop.
Save hdary85/a3ec41fb1f171ba272512c5cb05f31a1 to your computer and use it in GitHub Desktop.
from sklearn.ensemble import IsolationForest
from sklearn.cluster import DBSCAN
from sklearn.neighbors import LocalOutlierFactor
from sklearn.covariance import EllipticEnvelope
from sklearn.svm import OneClassSVM
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
# --- Préparation des données ---
X = df_merged[features_cols].copy()
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# --- PCA pour visualisation ---
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
df_vis = pd.DataFrame(X_pca, columns=['pca1', 'pca2'])
# --- Dictionnaire des méthodes à tester ---
models = {
"Isolation Forest": IsolationForest(contamination=0.05, random_state=42),
"One-Class SVM": OneClassSVM(nu=0.05, kernel="rbf", gamma='scale'),
"Local Outlier Factor": LocalOutlierFactor(n_neighbors=20, contamination=0.05),
"Elliptic Envelope": EllipticEnvelope(contamination=0.05, random_state=42),
"DBSCAN": DBSCAN(eps=0.5, min_samples=5)
}
# --- Boucle sur les modèles ---
for name, model in models.items():
try:
# --- Prédiction ---
if name == "Local Outlier Factor":
y_pred = model.fit_predict(X_scaled)
elif name == "DBSCAN":
y_pred = model.fit_predict(X_scaled)
else:
model.fit(X_scaled)
y_pred = model.predict(X_scaled)
# --- Marquage des anomalies ---
anomalies = (y_pred == -1).astype(int)
df_vis[f"{name}_anomaly"] = anomalies
# --- Visualisation ---
plt.figure(figsize=(9, 6))
sns.scatterplot(
x='pca1',
y='pca2',
hue=df_vis[f"{name}_anomaly"],
palette={0: 'blue', 1: 'red'},
data=df_vis,
alpha=0.6
)
plt.title(f"📊 {name} - Détection d'anomalies (projection PCA)")
plt.xlabel("Composante principale 1")
plt.ylabel("Composante principale 2")
plt.legend(title='Anomalie', labels=['Normal', 'Suspect'])
plt.grid(True)
plt.show()
except Exception as e:
print(f"⚠️ Erreur avec le modèle {name} : {e}")
# --- Résumé du nombre d'anomalies par méthode ---
anomaly_summary = {}
for name in models.keys():
col_name = f"{name}_anomaly"
if col_name in df_vis.columns:
anomaly_count = df_vis[col_name].sum()
anomaly_summary[name] = anomaly_count
# Affichage du résumé
print("\n📊 Nombre d'anomalies détectées par méthode :")
for method, count in anomaly_summary.items():
print(f"- {method}: {count} anomalies")
# --- Sélection de la méthode la plus conservatrice (moins d'anomalies) ---
best_method = min(anomaly_summary, key=anomaly_summary.get)
print(f"\n✅ La méthode la plus conservatrice est : **{best_method}** avec {anomaly_summary[best_method]} anomalies détectées.")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment