Last active
September 2, 2023 08:53
-
-
Save heimoshuiyu/2e27ea2b39ce6ad162bb454caadd61f6 to your computer and use it in GitHub Desktop.
Self-hosted OpenAI Whisper model with fastapi, support OpenAI API Format and alumae/ruby-pocketsphinx-server
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import wave | |
import hashlib | |
import argparse | |
from datetime import datetime | |
import os | |
from typing import Any | |
from fastapi import File, UploadFile, Form, FastAPI, Request | |
from src.whisper_ctranslate2.whisper_ctranslate2 import Transcribe, TranscriptionOptions | |
from src.whisper_ctranslate2.writers import format_timestamp | |
import opencc | |
ccc = opencc.OpenCC("t2s.json") | |
app = FastAPI() | |
# allow all cors | |
from fastapi.middleware.cors import CORSMiddleware | |
origins = ["*"] | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=origins, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Define the allowed file extensions | |
ALLOWED_EXTENSIONS = { | |
"mp3", | |
"mp4", | |
"mpeg", | |
"mpga", | |
"m4a", | |
"wav", | |
"webm", | |
"3gp", | |
"flac", | |
"ogg", | |
"mkv", | |
} | |
def allowed_file(filename: str | None): | |
if filename is None: | |
return False | |
if filename.split(".")[-1] not in ALLOWED_EXTENSIONS: | |
return False | |
return True | |
def generate_tsv(result: dict[str, list[Any]]): | |
tsv = "start\tend\ttext\n" | |
for i, segment in enumerate(result["segments"]): | |
start_time = str(round(1000 * segment["start"])) | |
end_time = str(round(1000 * segment["end"])) | |
text = segment["text"] | |
tsv += f"{start_time}\t{end_time}\t{text}\n" | |
return tsv | |
def generate_srt(result: dict[str, list[Any]]): | |
srt = "" | |
for i, segment in enumerate(result["segments"], start=1): | |
start_time = format_timestamp(segment["start"]) | |
end_time = format_timestamp(segment["end"]) | |
text = segment["text"] | |
srt += f"{i}\n{start_time} --> {end_time}\n{text}\n\n" | |
return srt | |
def generate_vtt(result: dict[str, list[Any]]): | |
vtt = "WEBVTT\n\n" | |
for segment in result["segments"]: | |
start_time = format_timestamp(segment["start"]) | |
end_time = format_timestamp(segment["end"]) | |
text = segment["text"] | |
vtt += f"{start_time} --> {end_time}\n{text}\n\n" | |
return vtt | |
print("Loading model...") | |
transcriber = Transcribe( | |
model_path="large-v2", | |
device="auto", | |
device_index=0, | |
compute_type="default", | |
threads=1, | |
cache_directory="", | |
local_files_only=False, | |
) | |
print("Model loaded!") | |
def get_options(*, initial_prompt=""): | |
options = TranscriptionOptions( | |
beam_size=5, | |
best_of=5, | |
patience=1.0, | |
length_penalty=1.0, | |
log_prob_threshold=-1.0, | |
no_speech_threshold=0.6, | |
compression_ratio_threshold=2.4, | |
condition_on_previous_text=True, | |
temperature=[0.0, 1.0 + 1e-6, 0.2], | |
suppress_tokens=[-1], | |
word_timestamps=True, | |
print_colors=False, | |
prepend_punctuations="\"'“¿([{-", | |
append_punctuations="\"'.。,,!!??::”)]}、", | |
vad_filter=False, | |
vad_threshold=None, | |
vad_min_speech_duration_ms=None, | |
vad_max_speech_duration_s=None, | |
vad_min_silence_duration_ms=None, | |
initial_prompt=initial_prompt, | |
) | |
return options | |
@app.post("/android") | |
async def translateapi(request: Request, task: str = "transcribe"): | |
content_type = request.headers.get("Content-Type", "") | |
print("task", task) | |
print("downloading request file", content_type) | |
splited = [i.strip() for i in content_type.split(",") if "=" in i] | |
info = {k: v for k, v in (i.split("=") for i in splited)} | |
print(info) | |
channels = int(info.get("channels", "1")) | |
rate = int(info.get("rate", "16000")) | |
body = await request.body() | |
md5 = hashlib.md5(body).hexdigest() | |
filename = datetime.now().strftime("%Y%m%d-%H%M%S") + "." + md5 + ".wav" | |
# save the file to a temporary location | |
file_path = os.path.join("./cache", "android", filename) | |
with wave.open(file_path, "wb") as buffer: | |
buffer.setnchannels(channels) | |
buffer.setsampwidth(2) | |
buffer.setframerate(rate) | |
buffer.writeframes(body) | |
options = get_options() | |
result = transcriber.inference( | |
audio=file_path, | |
task=task, | |
language="", | |
verbose=False, | |
live=False, | |
options=options, | |
) | |
text = result.get("text", "") | |
text = ccc.convert(text) | |
print("result", text) | |
return { | |
"status": 0, | |
"hypotheses": [{"utterance": text}], | |
"id": md5, | |
} | |
@app.post("/v1/audio/transcriptions") | |
async def transcription( | |
file: UploadFile = File(...), | |
prompt: str = Form(""), | |
response_type: str = Form("json"), | |
): | |
"""Transcription endpoint | |
User upload audio file in multipart/form-data format and receive transcription in response | |
""" | |
# check if the file is allowed | |
if not allowed_file(file.filename): | |
return {"error": "Invalid file format"} | |
# timestamp as filename, keep original extension | |
assert file.filename is not None | |
filename = ( | |
datetime.now().strftime("%Y%m%d-%H%M%S") + "." + file.filename.split(".")[-1] | |
) | |
# save the file to a temporary location | |
file_path = os.path.join("./cache", filename) | |
with open(file_path, "wb") as buffer: | |
buffer.write(file.file.read()) | |
# Define the transcription options | |
options = get_options(initial_prompt=prompt) | |
result: Any = transcriber.inference( | |
audio=file_path, | |
task="transcribe", | |
language="", | |
verbose=False, | |
live=False, | |
options=options, | |
) | |
if response_type == 'text': | |
return result["text"].strip() | |
elif response_type == "json": | |
return result | |
elif response_type == "tsv": | |
return generate_tsv(result) | |
elif response_type == "srt": | |
return generate_srt(result) | |
elif response_type == "vtt": | |
return generate_vtt(result) | |
return {"error": "Invalid response_type"} | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", default="0.0.0.0", type=str) | |
parser.add_argument("--port", default=5000, type=int) | |
args = parser.parse_args() | |
import uvicorn | |
uvicorn.run(app, host=args.host, port=args.port) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment