Created
March 19, 2020 09:39
-
-
Save hellosaumil/ecbd48989cff3559ac915fe9eb7b7b38 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class myNNUnwrapper(): | |
def __init__(self, inputTensor, nnModules, nnParams, verbose=False): | |
self.inputTensor = inputTensor | |
self.nnModules, self.nnParams = nnModules, nnParams | |
self.verbose = verbose | |
self.resolveAll() | |
return | |
def __str__(self): | |
return '' | |
def resolveAll(self): | |
self.currentTensor = self.inputTensor | |
self.module_to_nnResolver = {'linear': self.resolveLinear, | |
'preprocess': self.resolveLinear, | |
'view': self.resolveView, | |
'conv2d': self.resolveConv2d, | |
'convout': self.resolveConv2dOut} | |
print("\nResolved Dimensions: \ninputTensor: \t{}\n".format(self.currentTensor)) | |
for (idx, (nnModule, params)) in enumerate(zip(self.nnModules, self.nnParams)): | |
moduleName = nnModule.lower() | |
nnModuleResolver = self.module_to_nnResolver[moduleName] | |
print("\n{}. {}".format(idx+1, nnModuleResolver( *(params+(self.verbose,)) ))) | |
def resolveLinear(self, in_dim, out_dim, verbose=False): | |
self.currentTensor[1] = out_dim | |
if not verbose: | |
return "linear: \t{}".format(self.currentTensor) | |
else: | |
return "{} : Linear(in_features={}, out_features={})".format(*(self.currentTensor)*2) | |
def resolveView(self, extra, new_dim, x, y, verbose=False): | |
[batch, out_dim] = self.inputTensor[0], self.currentTensor[1] | |
if out_dim // new_dim == x * y: | |
self.currentTensor = [batch, new_dim, x, y] | |
if not verbose: | |
return "view: \t[{}, {}, {}, {}]".format(*(self.currentTensor)) | |
else: | |
return "[{}, {}, {}, {}] : View(batch={}, samples={}, dim=({}, {}))".format(*(self.currentTensor*2)) | |
else: | |
print("\nError: Dimension Mismatch. {}, {}".format(out_dim // new_dim, x * y)) | |
print("\textra:{}, new_dim:{}, x:{}, y:{}\n".format(extra, new_dim, x, y)) | |
def resolveConv2dOut(self, *args): | |
return self.resolveConv2d(*args, convOut=True) | |
def resolveConv2d(self, C_in, C_out, kernel_size, stride=1, padding=0, pixel_shuffle=False, verbose=False, convOut=False): | |
f = kernel_size | |
p = padding | |
s = stride | |
d = dilation = 1 | |
[N, C_in, H_in, W_in] = self.currentTensor | |
H_out = (H_in + 2*p - d*(f-1) - 1) // s + 1 | |
W_out = (W_in + 2*p - d*(f-1) -1) // s + 1 | |
self.currentTensor = [N, C_out, H_out, W_out] | |
if pixel_shuffle: | |
shuffle_by = 2 | |
self.currentTensor = [N, C_out//shuffle_by**2, H_out*shuffle_by, W_out*shuffle_by] | |
if not verbose: | |
return "{}: \t{}".format(("conv_out" if convOut else "conv2d"), self.currentTensor) | |
else: | |
return "{}: {}(in_channels={}, out_channels={}, kernel_size=({},{}), strides=({},{}), padding=({},{}), dilation={})".\ | |
format(("ConvOut" if convOut else "Conv2d"), | |
self.currentTensor, C_in, C_out, | |
*(f,)*2, *((s,)*2), *((p,)*2), d) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment