Last active
October 7, 2024 17:34
-
-
Save helton/edded58fb723214891416ae259b037f0 to your computer and use it in GitHub Desktop.
Auto Unwrap decorator for Celery tasks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def auto_unwrap(func): | |
""" | |
Decorator to allow a celery task function to accept: | |
- Individual positional and keyword arguments, | |
- A single list argument (unpacked as positional arguments), | |
- A single dictionary argument (unpacked as keyword arguments). | |
""" | |
@wraps(func) | |
def wrapper(*args, **kwargs): | |
# Case 1: Single list argument, no kwargs | |
if len(args) == 1 and isinstance(args[0], list) and not kwargs: | |
return func(*args[0], **kwargs) | |
# Case 2: Single dict argument, no kwargs | |
elif len(args) == 1 and isinstance(args[0], dict) and not kwargs: | |
return func(**args[0]) | |
# Case 3: Regular args and kwargs | |
else: | |
return func(*args, **kwargs) | |
return wrapper |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@app.task(name="download") | |
@auto_unwrap | |
def download(uid: str, source: str, source_type: str): | |
if source_type in ["url", "s3.object"]: | |
file_name = source.split("/")[-1] | |
else: | |
file_name = source | |
base_name, _ = os.path.splitext(file_name) | |
return { | |
"uid": uid, | |
"source": f"s3://mybucket/{uid}/downloads/{base_name}/{file_name}", | |
"source_type": "s3.object" | |
} | |
@app.task(name="extract") | |
@auto_unwrap | |
def extract(uid: str, source: str, source_type: str): | |
file_name = source.split("/")[-1] | |
base_name, _ = os.path.splitext(file_name) | |
return { | |
"uid": uid, | |
"source": f"s3://mybucket/{uid}/extractions/{base_name}/{base_name}.txt", | |
"source_type": "s3.object" | |
} | |
@app.task(name="chunkenize") | |
@auto_unwrap | |
def chunkenize(uid: str, source: str, source_type: str): | |
file_name = source.split("/")[-1] | |
base_name, _ = os.path.splitext(file_name) | |
return [{ | |
"uid": uid, | |
"source": f"s3://mybucket/{uid}/chunks/{base_name}/chunk_{i}.txt", | |
"source_type": "s3.folder" | |
} for i in range(5)] | |
@app.task(name="embedding") | |
@auto_unwrap | |
def embedding(uid: str, source: str, source_type: str): | |
file_name = source.split("/")[-1] | |
base_name, _ = os.path.splitext(file_name) | |
return [{ | |
"uid": uid, | |
"source": f"s3://mybucket/{uid}/embeddings/{base_name}/embedding_n.json", | |
"source_type": "s3.folder" | |
}] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment