Skip to content

Instantly share code, notes, and snippets.

@hemalvarambhia
Created April 20, 2019 16:25
Show Gist options
  • Save hemalvarambhia/03e23c9d499d8b4d0b19849c90c53279 to your computer and use it in GitHub Desktop.
Save hemalvarambhia/03e23c9d499d8b4d0b19849c90c53279 to your computer and use it in GitHub Desktop.
Using Scikit-Learn's PCA to reproduce the results of the Lindsay Smith PCA Tutorial Paper
import numpy as np
from numpy.linalg import inv
from scipy import linalg
from sklearn.decomposition import PCA
from sklearn import utils
X = np.array([[2.5, 2.4], [0.5, 0.7], [2.2, 2.9], [1.9, 2.2], [3.1, 3.0], [2.3, 2.7], [2, 1.6], [1, 1.1], [1.5, 1.6], [1.1, 0.9]])
mean_ = np.mean(X, axis=0)
X = X - mean_
pca = PCA(n_components=2)
pca.fit(X)
pca.components_
pca.transform(X)
print(X)
print('components = ', pca.components_)
print('================')
print(pca.transform(X))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment