Skip to content

Instantly share code, notes, and snippets.

@hemmer
Last active December 24, 2015 21:19
Show Gist options
  • Select an option

  • Save hemmer/6864729 to your computer and use it in GitHub Desktop.

Select an option

Save hemmer/6864729 to your computer and use it in GitHub Desktop.
Mathematica factoring
Here is an example input:
In[89]:= AA = 1/(24 \[Eta] \[Tau]C \[Tau]Q) (-12 \[Eta] \[Tau]Q - 12 a^2 GC \[Tau]C \[Tau]Q - 3 \[Zeta] \[Tau]C \[Tau]Q + 5 \[Zeta] \[Xi] \[Tau]C \[Tau]Q + Sqrt[(48 \[Zeta] \[Eta] (-3 + 5 \[Xi]) \[Tau]C + (12 \[Eta] + (12 a^2 GC + \[Zeta] (3 - 5 \[Xi])) \[Tau]C)^2) \[Tau]Q^2])
This method doesn't work:
In[90]:= Solve[AA == 0, \[Zeta]]
During evaluation of In[90]:= $RecursionLimit::reclim: Recursion depth of 20 exceeded. >>
Putting in quadratic form means the problem can be solved:
In[91]:= BB = (12 \[Eta] + (12 a^2 GC + \[Zeta] (3 - 5 \[Xi])) \[Tau]C)
Solve[BB == 0, \[Zeta]]
Desired solution:
Out[92]= {{\[Zeta] -> ( 12 (\[Eta] + a^2 GC \[Tau]C))/((-3 + 5 \[Xi]) \[Tau]C)}}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment