Last active
January 29, 2025 19:41
-
-
Save henriquemeloo/94a11f6dd1d1f4ebbaf299f39a2daec6 to your computer and use it in GitHub Desktop.
Merge LinkedIn Ads streams and export csv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import glob | |
import pandas as pd | |
ad_campaign_analytics = pd.read_parquet([f for f in glob.glob("./linkedin_data/ad_campaign_analytics/*.parquet")]) | |
ad_campaign_analytics = ad_campaign_analytics.loc[:, [ | |
'start_date', | |
'costInLocalCurrency', | |
'impressions', | |
'clicks', | |
'likes', | |
'reactions', | |
'comments', | |
'pivotValues' | |
]] | |
ad_campaign_analytics["start_date"] = pd.json_normalize(ad_campaign_analytics["start_date"])["member0"] | |
ad_campaign_analytics["campaign_id"] = [str(r[0].split(":")[-1]) for r in ad_campaign_analytics["pivotValues"]] | |
ad_campaign_analytics.drop(columns=["pivotValues"], inplace=True) | |
ad_campaign_analytics = ad_campaign_analytics.loc[~ad_campaign_analytics[ | |
["impressions", "clicks", "likes", "reactions", "comments"] | |
].isna().all(axis=1)] | |
campaigns = pd.read_parquet([f for f in glob.glob("./linkedin_data/campaigns/*.parquet")]) | |
campaigns = campaigns.loc[:, ["id", "name"]] | |
campaigns["id"] = campaigns["id"].astype(str) | |
ad_campaign_analytics = ad_campaign_analytics.merge( | |
campaigns, left_on="campaign_id", right_on="id", how="left").drop( | |
columns=["id", "campaign_id"] | |
).rename(columns={"name": "campaign_name"}).sort_values( | |
"start_date", ignore_index=True | |
) | |
assert not ad_campaign_analytics["campaign_name"].isna().any() | |
ad_campaign_analytics.to_csv( | |
"./linkedin_data/output/ad_campaign_analytics.csv", index=False | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment