Skip to content

Instantly share code, notes, and snippets.

@henryiii
Created December 1, 2024 21:37
Show Gist options
  • Save henryiii/f1abe55c2be328de699c39f549d845db to your computer and use it in GitHub Desktop.
Save henryiii/f1abe55c2be328de699c39f549d845db to your computer and use it in GitHub Desktop.
Wasm Ray Tracer JIT demo

This is a demo of the Wasm JIT. Load the following page: http://wasm.compiler-research.org. This currently redirects to https://wasmdemo.argentite.me, where the demo lives. Copy and paste the code in wasmraytracer.cpp, adjust the samples if needed, then press "run".

Older versions of Safari might have some issues, use a modern Safari or Chome, Firefox, Edge, etc.

// Adapted from smallpt, a Path Tracer by Kevin Beason, 2008
#include <math.h>
#include <stdlib.h>
#include <vector>
struct Vec {
double x, y, z; // position, also color (r,g,b)
Vec(double x_ = 0, double y_ = 0, double z_ = 0) {
x = x_;
y = y_;
z = z_;
}
Vec operator+(const Vec &b) const { return Vec(x + b.x, y + b.y, z + b.z); }
Vec operator-(const Vec &b) const { return Vec(x - b.x, y - b.y, z - b.z); }
Vec operator*(double b) const { return Vec(x * b, y * b, z * b); }
Vec mult(const Vec &b) const { return Vec(x * b.x, y * b.y, z * b.z); }
Vec &norm() { return *this = *this * (1 / sqrt(x * x + y * y + z * z)); }
double dot(const Vec &b) const { return x * b.x + y * b.y + z * b.z; }
Vec operator%(Vec &b) { // cross
return Vec(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x);
}
};
struct Ray {
Vec o, d;
Ray(Vec o_, Vec d_) : o(o_), d(d_) {}
};
enum Refl_t { DIFF, SPEC, REFR }; // material types, used in radiance()
struct Sphere {
double rad; // radius
Vec p, e, c; // position, emission, color
Refl_t refl; // reflection type (DIFFuse, SPECular, REFRactive)
Sphere(double rad_, Vec p_, Vec e_, Vec c_, Refl_t refl_)
: rad(rad_), p(p_), e(e_), c(c_), refl(refl_) {}
double intersect(const Ray &r) const { // returns distance, 0 if nohit
Vec op = p - r.o; // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
double t, eps = 1e-4, b = op.dot(r.d), det = b * b - op.dot(op) + rad * rad;
if (det < 0)
return 0;
else
det = sqrt(det);
return (t = b - det) > eps ? t : ((t = b + det) > eps ? t : 0);
}
};
std::vector<Sphere> spheres = {
// Scene: radius, position, emission, color, material
Sphere(1e5, Vec(1e5 + 1, 40.8, 81.6), Vec(), Vec(.75, .25, .25),
DIFF), // Left
Sphere(1e5, Vec(-1e5 + 99, 40.8, 81.6), Vec(), Vec(.25, .25, .75),
DIFF), // Rght
Sphere(1e5, Vec(50, 40.8, 1e5), Vec(), Vec(.75, .75, .75), DIFF), // Back
Sphere(1e5, Vec(50, 40.8, -1e5 + 170), Vec(), Vec(), DIFF), // Frnt
Sphere(1e5, Vec(50, 1e5, 81.6), Vec(), Vec(.75, .75, .75), DIFF), // Botm
Sphere(1e5, Vec(50, -1e5 + 81.6, 81.6), Vec(), Vec(.75, .75, .75),
DIFF), // Top
Sphere(16.5, Vec(27, 16.5, 47), Vec(), Vec(1, 1, 1) * .999, SPEC), // Mirr
Sphere(16.5, Vec(73, 16.5, 78), Vec(), Vec(1, 1, 1) * .999, REFR), // Glas
Sphere(600, Vec(50, 681.6 - .27, 81.6), Vec(12, 12, 12), Vec(),
DIFF) // Lite
};
inline double clamp(double x) { return x < 0 ? 0 : x > 1 ? 1 : x; }
inline int toInt(double x) { return int(pow(clamp(x), 1 / 2.2) * 255 + .5); }
inline bool intersect(const Ray &r, double &t, int &id) {
double n = spheres.size(), d, inf = t = 1e20;
for (int i = int(n); i--;)
if ((d = spheres[i].intersect(r)) && d < t) {
t = d;
id = i;
}
return t < inf;
}
Vec radiance(const Ray &r, int depth, unsigned short *Xi) {
double t; // distance to intersection
int id = 0; // id of intersected object
if (!intersect(r, t, id))
return Vec(); // if miss, return black
const Sphere &obj = spheres[id]; // the hit object
Vec x = r.o + r.d * t, n = (x - obj.p).norm(),
nl = n.dot(r.d) < 0 ? n : n * -1, f = obj.c;
double p = f.x > f.y && f.x > f.z ? f.x : f.y > f.z ? f.y : f.z; // max refl
if (++depth > 5) {
if (erand48(Xi) < p) {
f = f * (1 / p);
} else {
return obj.e; // R.R.
}
}
if (obj.refl == DIFF) { // Ideal DIFFUSE reflection
double r1 = 2 * M_PI * erand48(Xi), r2 = erand48(Xi), r2s = sqrt(r2);
Vec w = nl, u = ((fabs(w.x) > .1 ? Vec(0, 1) : Vec(1)) % w).norm(),
v = w % u;
Vec d = (u * cos(r1) * r2s + v * sin(r1) * r2s + w * sqrt(1 - r2)).norm();
return obj.e + f.mult(radiance(Ray(x, d), depth, Xi));
} else if (obj.refl == SPEC) // Ideal SPECULAR reflection
return obj.e +
f.mult(radiance(Ray(x, r.d - n * 2 * n.dot(r.d)), depth, Xi));
Ray reflRay(x, r.d - n * 2 * n.dot(r.d)); // Ideal dielectric REFRACTION
bool into = n.dot(nl) > 0; // Ray from outside going in?
double nc = 1, nt = 1.5, nnt = into ? nc / nt : nt / nc, ddn = r.d.dot(nl),
cos2t;
if ((cos2t = 1 - nnt * nnt * (1 - ddn * ddn)) <
0) // Total internal reflection
return obj.e + f.mult(radiance(reflRay, depth, Xi));
Vec tdir =
(r.d * nnt - n * ((into ? 1 : -1) * (ddn * nnt + sqrt(cos2t)))).norm();
double a = nt - nc, b = nt + nc, R0 = a * a / (b * b),
c = 1 - (into ? -ddn : tdir.dot(n));
double Re = R0 + (1 - R0) * c * c * c * c * c, Tr = 1 - Re, P = .25 + .5 * Re,
RP = Re / P, TP = Tr / (1 - P);
return obj.e +
f.mult(depth > 2
? (erand48(Xi) < P ? // Russian roulette
radiance(reflRay, depth, Xi) * RP
: radiance(Ray(x, tdir), depth, Xi) * TP)
: radiance(reflRay, depth, Xi) * Re +
radiance(Ray(x, tdir), depth, Xi) * Tr);
}
#include <SDL2/SDL.h>
int mymain() {
int w = 320, h = 240, samps = 16; // # samples
// Initialize
SDL_Init(SDL_INIT_VIDEO);
SDL_Window *window;
SDL_Renderer *renderer;
SDL_CreateWindowAndRenderer(w, h, 0, &window, &renderer);
SDL_Texture *texture = SDL_CreateTexture(renderer, SDL_PIXELFORMAT_RGBA8888,
SDL_TEXTUREACCESS_STREAMING, w, h);
Ray cam(Vec(50, 52, 295.6), Vec(0, -0.042612, -1).norm()); // cam pos, dir
Vec cx = Vec(w * .5135 / h), cy = (cx % cam.d).norm() * .5135, r,
*c = new Vec[w * h];
int y;
for (y = 0; y < h; y++) { // Loop over image rows
unsigned short x, Xi[3] = {0, 0, static_cast<unsigned short>(y * y * y)};
for (x = 0; x < w; x++) { // Loop cols
int sy, i = (h - y - 1) * w + x;
for (sy = 0; sy < 2; sy++) { // 2x2 subpixel rows
int sx;
for (sx = 0; sx < 2; sx++, r = Vec()) { // 2x2 subpixel cols
int s;
for (s = 0; s < samps; s++) {
double r1 = 2 * erand48(Xi),
dx = r1 < 1 ? sqrt(r1) - 1 : 1 - sqrt(2 - r1);
double r2 = 2 * erand48(Xi),
dy = r2 < 1 ? sqrt(r2) - 1 : 1 - sqrt(2 - r2);
Vec d = cx * (((sx + .5 + dx) / 2 + x) / w - .5) +
cy * (((sy + .5 + dy) / 2 + y) / h - .5) + cam.d;
r = r +
radiance(Ray(cam.o + d * 140, d.norm()), 0, Xi) * (1. / samps);
} // Camera rays are pushed ^^^^^ forward to start in interior
c[i] = c[i] + Vec(clamp(r.x), clamp(r.y), clamp(r.z)) * .25;
}
}
}
}
uint8_t pixels[w * h][4];
int i;
for (i = 0; i < w * h; i++) {
pixels[i][0] = 255;
pixels[i][1] = toInt(c[i].x);
pixels[i][2] = toInt(c[i].y);
pixels[i][3] = toInt(c[i].z);
}
SDL_UpdateTexture(texture, nullptr, pixels, w * 4);
SDL_RenderCopy(renderer, texture, nullptr, nullptr);
SDL_RenderPresent(renderer);
return 0;
}
mymain();
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment