Created
March 12, 2023 00:28
-
-
Save henryliu5/082e9fae6c5bfa920d929fb27592676c to your computer and use it in GitHub Desktop.
GPUDirect Storage Benchmarking Script
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import subprocess | |
| import argparse | |
| import os | |
| import pandas as pd | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| plt.style.use('seaborn') | |
| load_type = {'SEQ_READ': 0, 'SEQ_WRITE':1, 'RAND_READ': 2, 'RAND_WRITE': 3} | |
| # transfer_type = {'Storage->GPU (GDS)': 0, 'Storage->CPU': 1, 'Storage->CPU->GPU': 2, 'Storage->CPU-GPU_ASYNC', 3, 'Storage->PAGE_CACHE->CPU->GPU': 4, 'Storage->GPU_ASYNC': 5, 'STORAGE->GPU_BATCH': 6} | |
| transfer_type = {'Storage->GPU (GDS)': 0, 'Storage->CPU->GPU': 2, 'Storage->PAGE_CACHE->CPU->GPU': 4} | |
| def init_gds_files(gdsio_path, output_dir, file_size, device, workers): | |
| ''' To do read tests, write test must be done first with correct number of workers and file size ''' | |
| # Just do a random write with the correct number of workers, will generate gdsio.[0 - <workers - 1>] | |
| cmd = ['sudo', gdsio_path, '-D', output_dir, '-d', device, '-T', '1', '-s', file_size, '-w', workers, '-I', 3] | |
| cmd = [str(x) for x in cmd] | |
| subprocess.run(cmd) | |
| def main(gdsio_path, output_dir, device, numa_node, load): | |
| file_size = '30G' | |
| io_sizes = ['128K', '256K', '512K', '1M', '4M', '16M', '64M', '128M'] | |
| threads = [1, 4, 16, 32] | |
| time = '30' | |
| # See if benchmark files need to be generated | |
| if not os.path.isfile(os.path.join(output_dir, f'gdsio.{max(threads) - 1}')): | |
| init_gds_files(gdsio_path, output_dir, file_size, device, max(threads)) | |
| res_dict = {'Transfer Type': [], 'Threads': [], 'Throughput (GiB/s)': [], 'Latency (usec)': [], 'IO Size': []} | |
| base_cmd = ['sudo', gdsio_path, '-D', output_dir, '-d', device, '-n', numa_node, '-T', time, '-s', file_size] | |
| for io_size in io_sizes: | |
| for thread in threads: | |
| for transfer_name, x in transfer_type.items(): | |
| new_cmd = base_cmd + ['-i', io_size] + ['-w', thread] + ['-x', x] + ['-I', load_type[load]] | |
| new_cmd = [str(x) for x in new_cmd] | |
| print('Running', new_cmd) | |
| res = subprocess.run(new_cmd, capture_output=True).stdout | |
| res = str(res).split(' ') | |
| latency = float(res[res.index('Avg_Latency:') + 1]) | |
| throughput = float(res[res.index('Throughput:') + 1]) | |
| print('latency', latency, 'throughput', throughput) | |
| res_dict['Transfer Type'].append(transfer_name) | |
| res_dict['Threads'].append(thread) | |
| res_dict['IO Size'].append(io_size) | |
| res_dict['Latency (usec)'].append(latency) | |
| res_dict['Throughput (GiB/s)'].append(throughput) | |
| df = pd.DataFrame.from_dict(res_dict) | |
| df.to_csv(f'gds_bench_save_device_{device}_numa_{numa_node}_{load}.csv') | |
| def plot_results(device, numa_node, load): | |
| df = pd.read_csv(f'gds_bench_save_device_{device}_numa_{numa_node}_{load}.csv') | |
| g = sns.catplot(df, kind='bar', x='Threads', y='Latency (usec)', col='IO Size', hue='Transfer Type', sharey=False) | |
| g.figure.savefig('gds_plot_latency.png') | |
| g = sns.catplot(df, kind='bar', x='Threads', y='Throughput (GiB/s)', col='IO Size', hue='Transfer Type', sharey=False) | |
| g.figure.savefig('gds_plot_throughput.png') | |
| if __name__ == '__main__': | |
| gdsio_path = '/usr/local/cuda/gds/tools/gdsio' | |
| gds_dir = 'nvme_mount/gds_benchmarks/' | |
| device = 1 | |
| numa_node = 1 | |
| load = 'RAND_READ' | |
| # main(gdsio_path, gds_dir, device, numa_node, load) | |
| plot_results(device, numa_node, load) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment