Skip to content

Instantly share code, notes, and snippets.

@heronshoes
Last active June 10, 2022 21:39
Show Gist options
  • Save heronshoes/1885defb4f96c65ddbebb67e9cc7b14d to your computer and use it in GitHub Desktop.
Save heronshoes/1885defb4f96c65ddbebb67e9cc7b14d to your computer and use it in GitHub Desktop.
Comment for red-data-tools / red-datasets #140

red-data-tools / red-datasets #140

Fix Rdatasets#each to change String datatype for mixed data of Numeric and String.

  • This is the data preview after this fix applied.
  • 55 datasets are fixed.
# [package, dataset] pairs
[["AER", "ResumeNames"], ["boot", "tau"], ["carData", "Blackmore"], ["causaldata", "restaurant_inspections"], ["causaldata", "ri"], ["causaldata", "training_example"], ["DAAG", "biomass"], ["DAAG", "hotspots"], ["DAAG", "rockArt"], ["datasets", "attenu"], ["dragracer", "rpdr_ep"], ["drc", "germination"], ["Ecdat", "Mathlevel"], ["Ecdat", "Schooling"], ["gap", "aldh2"], ["gap", "cnv"], ["gap", "mao"], ["ggplot2", "mpg"], ["ggplot2movies", "movies"], ["gt", "gtcars"], ["HistData", "Pyx"], ["MASS", "Cars93"], ["mosaicData", "Galton"], ["mosaicData", "HELPfull"], ["nycflights13", "airports"], ["nycflights13", "planes"], ["openintro", "birds"], ["openintro", "cards"], ["openintro", "cpu"], ["openintro", "epa2012"], ["openintro", "epa2021"], ["openintro", "kobe_basket"], ["openintro", "labor_market_discrimination"], ["openintro", "nba_players_19"], ["openintro", "playing_cards"], ["openintro", "reddit_finance"], ["openintro", "resume"], ["openintro", "seattlepets"], ["openintro", "sowc_child_mortality"], ["openintro", "sp500_seq"], ["openintro", "ssd_speed"], ["openintro", "textbooks"], ["openintro", "ucla_f18"], ["openintro", "ucla_textbooks_f18"], ["openintro", "yrbss"], ["openintro", "yrbss_samp"], ["rpart", "car90"], ["Stat2Data", "Hawks"], ["stevedata", "anes_partytherms"], ["tidyr", "billboard"], ["validate", "nace_rev2"], ["validate", "samplonomy"], ["vcd", "Baseball"], ["vcd", "Lifeboats"], ["vcd", "SpaceShuttle"]]
Rdatasets: AER: ResumeNames, Are Emily and Greg More Employable Than Lakisha and Jamal?
RedAmber::DataFrame : 4870 x 27 Vectors
Vectors : 2 numeric, 25 strings
#  key           type   level data_preview
1  :name         string    36 ["Allison", "Kristen", "Lakisha", "Latonya", "Carrie", ... ]
2  :gender       string     2 {"female"=>3746, "male"=>1124}
3  :ethnicity    string     2 {"cauc"=>2435, "afam"=>2435}
4  :quality      string     2 {"low"=>2424, "high"=>2446}
5  :call         string     2 {"no"=>4478, "yes"=>392}
6  :city         string     2 {"chicago"=>2704, "boston"=>2166}
7  :jobs         uint8      7 [2, 3, 1, 4, 3, ... ]
8  :experience   uint8     26 [6, 6, 6, 6, 22, ... ]
9  :honors       string     2 {"no"=>4613, "yes"=>257}
10 :volunteer    string     2 {"no"=>2866, "yes"=>2004}
11 :military     string     2 {"no"=>4397, "yes"=>473}
12 :holes        string     2 {"yes"=>2182, "no"=>2688}
13 :school       string     2 {"no"=>2145, "yes"=>2725}
14 :email        string     2 {"no"=>2536, "yes"=>2334}
15 :computer     string     2 {"yes"=>3996, "no"=>874}
16 :special      string     2 {"no"=>3269, "yes"=>1601}
17 :college      string     2 {"yes"=>3504, "no"=>1366}
18 :minimum      string    13 ["5", "5", "5", "5", "some", ... ]
19 :equal        string     2 {"yes"=>1418, "no"=>3452}
20 :wanted       string     6 ["supervisor", "supervisor", "supervisor", "supervisor", "secretary", ... ]
 ... 7 more Vectors ...
Rdatasets: boot: tau, Tau Particle Decay Modes
RedAmber::DataFrame : 60 x 2 Vectors
Vectors : 1 numeric, 1 string
# key    type   level data_preview
1 :rate  double    48 [84.0, 84.7, 84.7, 85.1, 85.2, ... ]
2 :decay string     5 {"1"=>13, "rho"=>6, "pi"=>7, "e"=>14, "mu"=>20}
Rdatasets: carData: Blackmore, Exercise Histories of Eating-Disordered and Control Subjects
RedAmber::DataFrame : 945 x 4 Vectors
Vectors : 2 numeric, 2 strings
# key       type   level data_preview
1 :subject  string   231 ["100", "100", "100", "100", "100", ... ]
2 :age      double    82 [8.0, 10.0, 12.0, 14.0, 15.92, ... ]
3 :exercise double   405 [2.71, 1.94, 2.36, 1.54, 8.63, ... ]
4 :group    string     2 {"patient"=>586, "control"=>359}
Rdatasets: causaldata: restaurant_inspections, Data on Restaurant Inspections
RedAmber::DataFrame : 27178 x 5 Vectors
Vectors : 3 numeric, 2 strings
# key                type   level data_preview
1 :business_name     string  1618 ["MCGINLEYS PUB", "VILLAGE INN #1", "RONNIE SUSHI 2", "FRED MEYER - RETAIL FISH", "PHO GRILL", ... ]
2 :inspection_score  uint8     33 [94, 86, 80, 96, 83, ... ]
3 :Year              uint16    15 [2017, 2015, 2016, 2003, 2017, ... ]
4 :NumberofLocations uint16   135 [9, 66, 79, 86, 53, ... ]
5 :Weekend           string     2 {"FALSE"=>26968, "TRUE"=>210}
Rdatasets: causaldata: ri, A simple simulated data set for calculating p-values
RedAmber::DataFrame : 8 x 5 Vectors
Vectors : 2 numeric, 3 strings
# key   type   level data_preview
1 :name string     8 ["Andy", "Ben", "Chad", "Daniel", "Edith", ... ]
2 :d    uint8      2 {1=>4, 0=>4}
3 :y    uint8      6 [10, 5, 16, 3, 5, ... ]
4 :y0   string     5 {"."=>4, "5"=>1, "7"=>1, "8"=>1, "10"=>1}
5 :y1   string     5 {"10"=>1, "5"=>1, "16"=>1, "3"=>1, "."=>4}
Rdatasets: causaldata: training_example, Simulated data from a job training program
RedAmber::DataFrame : 25 x 9 Vectors
Vectors : 8 numeric, 1 string
# key               type   level data_preview
1 :unit_treat       uint8     11 [1, 2, 3, 4, 5, ... ], 15 nils
2 :age_treat        double    12 [18.0, 29.0, 24.0, 27.0, 33.0, ... ], 14 nils
3 :earnings_treat   string    14 ["9500", "12250", "11000", "11750", "13250", ... ]
4 :unit_control     double    23 [1.0, 2.0, 3.0, 4.0, 5.0, ... ], 3 nils
5 :age_control      double    18 [20.0, 27.0, 21.0, 39.0, 38.0, ... ], 4 nils
6 :earnings_control double    19 [8500.0, 10075.0, 8725.0, 12775.0, 12550.0, ... ], 4 nils
7 :unit_matched     uint8     11 [1, 2, 3, 4, 5, ... ], 15 nils
8 :age_matched      uint8     11 [18, 29, 24, 27, 33, ... ], 15 nils
9 :earnings_matched uint16    12 [8050, 10525, 9400, 10075, 11425, ... ], 14 nils
Rdatasets: DAAG: biomass, Biomass Data
RedAmber::DataFrame : 153 x 8 Vectors
Vectors : 6 numeric, 2 strings
# key      type   level data_preview
1 :dbh     uint8     58 [90, 106, 112, 34, 130, ... ]
2 :wood    uint16   109 [5528, 13650, 11200, 1000, nil, ... ], 20 nils
3 :bark    uint16    18 [nil, nil, nil, nil, nil, ... ], 136 nils
4 :root    double    47 [460.0, 1500.0, 1100.0, 430.0, 3000.0, ... ], 99 nils
5 :rootsk  double    42 [nil, 665.0, 680.0, 40.0, 1030.0, ... ], 100 nils
6 :branch  uint16    54 [nil, nil, nil, nil, nil, ... ], 77 nils
7 :species string     8 ["E. maculata", "E. pilularis", "E. pilularis", "E. pilularis", "E. maculata", ... ]
8 :fac26   string     4 {"z"=>75, "2"=>47, ""=>5, "6"=>26}
Rdatasets: DAAG: hotspots, Hawaian island chain hotspot Potassium-Argon ages
RedAmber::DataFrame : 35 x 6 Vectors
Vectors : 3 numeric, 3 strings
# key       type   level data_preview
1 :ID       string    35 ["3", "5", "6", "8", "9", ... ]
2 :name     string    33 ["Mauna Kea", "Kohala", "Haleakala", "West Maui", "Lanai", ... ]
3 :distance uint16    35 [54, 100, 182, 221, 226, ... ]
4 :age      double    35 [0.375, 0.43, 0.75, 1.32, 1.28, ... ]
5 :error    double    20 [0.05, 0.02, 0.04, 0.04, 0.04, ... ]
6 :source   string    21 ["1", "2", "3", "4", "5", ... ]
Rdatasets: DAAG: rockArt, Pacific Rock Art features
RedAmber::DataFrame : 103 x 641 Vectors
Vectors : 628 numeric, 13 strings
#   key              type   level data_preview
1   :"Site.No."      double   103 [2.0, 6.0, 7.0, 7.1, 9.0, ... ]
2   :"Site.Name"     string   102 ["Ramadordo", "Yaritari", "Wakuia Wai", "Wakuia Wai", "Ifa Kuruku", ... ]
3   :"Site.Code"     string    55 ["AED", "*", "AEH", "AEH", "ABZ", ... ]
4   :District        string    15 ["Sogeri", "Sogeri", "Sogeri", "Sogeri", "Sogeri", ... ]
5   :Island          string    26 ["PNG", "PNG", "PNG", "PNG", "PNG", ... ]
6   :Country         string     6 ["PNG", "PNG", "PNG", "PNG", "PNG", ... ]
7   :Technique       string     2 {"E"=>67, "P"=>36}
8   :Engtech         string     6 ["pecked", "n/a", "n/a", "*", "*", ... ]
9   :red             uint8      3 {nil=>68, 1=>31, 0=>4}
10  :black           uint8      3 {nil=>68, 0=>28, 1=>7}
11  :yellow          uint8      3 {nil=>68, 0=>30, 1=>5}
12  :white           uint8      3 {nil=>68, 0=>28, 1=>7}
13  :green           uint8      3 {nil=>68, 0=>33, 1=>2}
14  :"red.blk"       uint8      2 {nil=>68, 0=>35}
15  :"red.wh"        uint8      3 {nil=>68, 0=>31, 1=>4}
16  :"red.yell"      uint8      3 {nil=>68, 0=>34, 1=>1}
17  :"r.w.y"         uint8      3 {nil=>68, 0=>34, 1=>1}
18  :"black.white"   uint8      2 {nil=>68, 0=>35}
19  :blue            uint8      3 {nil=>68, 0=>32, 1=>3}
20  :Geology         string     6 ["igneous", "*", "*", "*", "*", ... ]
 ... 621 more Vectors ...
Rdatasets: datasets: attenu, The Joyner-Boore Attenuation Data
RedAmber::DataFrame : 182 x 5 Vectors
Vectors : 4 numeric, 1 string
# key      type   level data_preview
1 :event   uint8     23 [1, 2, 2, 2, 2, ... ]
2 :mag     double    17 [7.0, 7.4, 7.4, 7.4, 7.4, ... ]
3 :station string   118 ["117", "1083", "1095", "283", "135", ... ], 16 nils
4 :dist    double   153 [12.0, 148.0, 42.0, 85.0, 107.0, ... ]
5 :accel   double   120 [0.359, 0.014, 0.196, 0.135, 0.062, ... ]
Rdatasets: dragracer: rpdr_ep, RuPaul's Drag Race Episode Data
RedAmber::DataFrame : 175 x 22 Vectors
Vectors : 4 numeric, 17 strings, 1 temporal
#  key            type   level data_preview
1  :season        string    13 ["S01", "S01", "S01", "S01", "S01", ... ]
2  :episode       uint8     16 [1, 2, 3, 4, 5, ... ]
3  :airdate       date64   171 [#<DateTime: 2009-02-02T09:00:00+09:00 ((2454865j,0s,0n),+32400s,2299161j)>, #<DateTime: 2009-02-09T09:00:00+09:00 ((2454872j,0s,0n),+32400s,2299161j)>, ... ]
4  :special       uint8      2 {0=>152, 1=>23}
5  :finale        uint8      2 {0=>162, 1=>13}
6  :nickname      string   153 ["Drag on a Dime", "Girl Group Challenge", "Queens of All Media", "Mac Viva-Glam Challenge", "Drag School of Charm", ... ]
7  :runwaytheme   string    48 [nil, nil, nil, nil, nil, ... ], 128 nils
8  :numqueens     uint8     14 [9, 8, 7, 6, 5, ... ], 10 nils
9  :minic         string    89 [nil, "Act out emotions", nil, "30 Minutes to do partner's makeup", "Exercise/endurance challenge", ... ], 68 nils
10 :minicw1       string    73 [nil, "Ongina", nil, "Jade", "Rebecca Glasscock", ... ], 69 nils
11 :minicw2       string    30 [nil, "Akashia", nil, nil, nil, ... ], 145 nils
12 :minicw3       string     6 [nil, nil, nil, nil, nil, ... ], 170 nils
13 :bottom1       string   100 ["Akashia", "Akashia", "Akashia", "Jade", "Bebe Zahara Benet", ... ], 39 nils
14 :bottom2       string   101 ["Victoria (Porkchop) Parker", "Tammie Brown", "Shannel", "Rebecca Glasscock", "Ongina", ... ], 42 nils
15 :bottom3       string     2 {nil=>174, "Plastique Tiara"=>1}
16 :bottom4       string     2 {nil=>174, "Ra’jah O’Hara"=>1}
17 :bottom5       string     2 {nil=>174, "Scarlet Envy"=>1}
18 :bottom6       string     2 {nil=>174, "Shuga Cain"=>1}
19 :lipsyncartist string   106 ["RuPaul", "Michelle Williams", "Whitney Houston", "The Eurythmics", "Britney Spears", ... ], 27 nils
20 :lipsyncsong   string   148 ["Supermodel", "We Break the Dawn", "The Greatest Love of All", "Would I Lie to You?", "Stronger", ... ], 27 nils
 ... 2 more Vectors ...
Rdatasets: drc: germination, Germination of three crops
RedAmber::DataFrame : 192 x 5 Vectors
Vectors : 3 numeric, 2 strings
# key         type   level data_preview
1 :temp       uint8      6 [10, 10, 10, 10, 10, ... ]
2 :species    string     3 {"wheat"=>99, "mungbean"=>14, "rice"=>79}
3 :start      uint8     19 [0, 1, 2, 3, 4, ... ]
4 :end        string    19 ["1", "2", "3", "4", "5", ... ]
5 :germinated uint8     15 [0, 0, 0, 0, 0, ... ]
Rdatasets: Ecdat: Mathlevel, Level of Calculus Attained for Students Taking Advanced Micro-economics
RedAmber::DataFrame : 609 x 8 Vectors
Vectors : 4 numeric, 4 strings
# key            type   level data_preview
1 :mathlevel     string     7 ["170", "170", "170", "170", "170", ... ]
2 :sat           uint16    34 [670, 660, 610, 620, 430, ... ]
3 :language      string     2 {"no"=>539, "yes"=>70}
4 :sex           string     2 {"male"=>373, "female"=>236}
5 :major         string     5 {"ns"=>126, "other"=>130, "eco"=>209, "oss"=>103, "hum"=>41}
6 :mathcourse    uint8      4 {1=>297, 0=>30, 2=>274, 3=>8}
7 :physiccourse  uint8      3 {2=>13, 1=>405, 0=>191}
8 :chemistcourse uint8      3 {1=>497, 0=>40, 2=>72}
Rdatasets: Ecdat: Schooling, Wages and Schooling
RedAmber::DataFrame : 3010 x 28 Vectors
Vectors : 11 numeric, 17 strings
#  key       type   level data_preview
1  :smsa66   string     2 {"yes"=>1955, "no"=>1055}
2  :smsa76   string     2 {"yes"=>2146, "no"=>864}
3  :nearc2   string     2 {"no"=>1683, "yes"=>1327}
4  :nearc4   string     2 {"no"=>957, "yes"=>2053}
5  :nearc4a  string     2 {"no"=>1527, "yes"=>1483}
6  :nearc4b  string     2 {"no"=>2440, "yes"=>570}
7  :ed76     uint8     18 [7, 12, 12, 11, 12, ... ]
8  :ed66     uint8     19 [5, 11, 12, 11, 12, ... ]
9  :age76    uint8     11 [29, 27, 34, 27, 34, ... ]
10 :daded    double    20 [9.94, 8.0, 14.0, 11.0, 8.0, ... ]
11 :nodaded  string     2 {"yes"=>690, "no"=>2320}
12 :momed    double    20 [10.25, 8.0, 12.0, 12.0, 7.0, ... ]
13 :nomomed  string     2 {"yes"=>690, "no"=>2320}
14 :momdad14 string     2 {"yes"=>2376, "no"=>634}
15 :sinmom14 string     2 {"no"=>2707, "yes"=>303}
16 :step14   string     2 {"no"=>2893, "yes"=>117}
17 :south66  string     2 {"no"=>1763, "yes"=>1247}
18 :south76  string     2 {"no"=>1795, "yes"=>1215}
19 :lwage76  double   755 [6.306275, 6.175867, 6.580639, 5.521461, 6.591674, ... ]
20 :famed    uint8      9 [9, 8, 2, 6, 8, ... ]
 ... 8 more Vectors ...
Rdatasets: gap: aldh2, Internal functions for gap
RedAmber::DataFrame : 263 x 18 Vectors
Vectors : 17 numeric, 1 string
#  key            type   level data_preview
1  :id            string   263 ["2", "4", "6", "12", "13", ... ]
2  :y             uint8      2 {1=>130, 0=>133}
3  :"D12S2070.a1" uint8      5 {4=>94, 1=>62, 2=>76, 0=>12, 5=>19}
4  :"D12S2070.a2" uint8      9 [4, 4, 4, 4, 4, ... ]
5  :"D12S839.a1"  uint8      6 [3, 4, 3, 4, 5, ... ]
6  :"D12S839.a2"  uint8      7 [4, 5, 5, 5, 5, ... ]
7  :"D12S821.a1"  uint8      8 [3, 5, 3, 3, 5, ... ]
8  :"D12S821.a2"  uint8     13 [7, 6, 5, 4, 6, ... ]
9  :"D12S1344.a1" uint8     11 [8, 3, 3, 8, 3, ... ]
10 :"D12S1344.a2" uint8     13 [10, 4, 8, 8, 3, ... ]
11 :"EXON12.a1"   uint8      3 {2=>258, 0=>2, 1=>3}
12 :"EXON12.a2"   uint8      3 {2=>200, 1=>61, 0=>2}
13 :"EXON1.a1"    uint8      3 {2=>209, 0=>43, 1=>11}
14 :"EXON1.a2"    uint8      3 {2=>125, 0=>43, 1=>95}
15 :"D12S2263.a1" uint8     12 [6, 8, 7, 6, 9, ... ]
16 :"D12S2263.a2" uint8     11 [8, 9, 10, 7, 9, ... ]
17 :"D12S1341.a1" uint8      9 [5, 3, 8, 5, 6, ... ]
18 :"D12S1341.a2" uint8      9 [8, 5, 8, 7, 6, ... ]
Rdatasets: gap: cnv, Internal functions for gap
RedAmber::DataFrame : 602 x 5 Vectors
Vectors : 3 numeric, 2 strings
# key    type   level data_preview
1 :chr   string    24 ["1", "1", "1", "1", "1", ... ]
2 :start uint32   445 [9795, 97883261, 70123190, 64938246, 16355196, ... ]
3 :end   uint32   439 [107900000, 100200000, 74688347, 75289480, 18418523, ... ]
4 :band  string   204 ["p21.3-p13.3", "p21.3-p21.2", "p31.1", "p31.3-p31.1", "p36.13", ... ]
5 :freq  uint8     85 [1, 1, 2, 2, 1, ... ]
Rdatasets: gap: mao, Internal functions for gap
RedAmber::DataFrame : 340 x 19 Vectors
Vectors : 6 numeric, 13 strings
#  key       type   level data_preview
1  :id       string   253 ["2341.0", "2342.0", "2343.0", "2344.0", "2345.0", ... ]
2  :type     uint8      2 {0=>157, 1=>183}
3  :gender   uint8      2 {0=>150, 1=>190}
4  :age      uint8     43 [69, nil, nil, nil, nil, ... ], 188 nils
5  :aao      uint8     25 [nil, nil, nil, nil, nil, ... ], 296 nils
6  :aad      uint8     26 [nil, nil, nil, nil, nil, ... ], 295 nils
7  :updrs    uint8     21 [nil, nil, nil, nil, nil, ... ], 301 nils
8  :maoai2   string    42 ["116", "122", "112", "114", "112/112", ... ]
9  :ai2code  string    42 ["7", "10", "5", "6", "5/5", ... ]
10 :maobi2   string    30 ["179", "179", "175", "179", "181/181", ... ]
11 :bi2code  string    30 ["6", "6", "4", "6", "7/7", ... ]
12 :gtbex3   string    20 ["255", "255", "255", "255", "251/255", ... ]
13 :bex3code string    20 ["4", "4", "4", "4", "2/4", ... ]
14 :maoavntr string    12 ["", "", "", "", "", ... ]
15 :vntrcode string    12 ["", "", "", "", "", ... ]
16 :vntrcod2 string    12 ["", "", "", "", "", ... ]
17 :maoa31   string    49 ["", "", "", "", "", ... ]
18 :mao31cod string     8 ["", "", "", "", "", ... ]
19 :mao31co2 string     8 ["", "", "", "", "", ... ]
Rdatasets: ggplot2: mpg, Fuel economy data from 1999 to 2008 for 38 popular models of cars
RedAmber::DataFrame : 234 x 11 Vectors
Vectors : 5 numeric, 6 strings
#  key           type   level data_preview
1  :manufacturer string    15 ["audi", "audi", "audi", "audi", "audi", ... ]
2  :model        string    38 ["a4", "a4", "a4", "a4", "a4", ... ]
3  :displ        double    35 [1.8, 1.8, 2.0, 2.0, 2.8, ... ]
4  :year         uint16     2 {1999=>117, 2008=>117}
5  :cyl          uint8      4 {4=>81, 6=>79, 8=>70, 5=>4}
6  :trans        string    10 ["auto(l5)", "manual(m5)", "manual(m6)", "auto(av)", "auto(l5)", ... ]
7  :drv          string     3 {"f"=>106, "4"=>103, "r"=>25}
8  :cty          uint8     21 [18, 21, 20, 21, 16, ... ]
9  :hwy          uint8     27 [29, 29, 31, 30, 26, ... ]
10 :fl           string     5 {"p"=>52, "r"=>168, "e"=>8, "d"=>5, "c"=>1}
11 :class        string     7 ["compact", "compact", "compact", "compact", "compact", ... ]
Rdatasets: ggplot2movies: movies, Movie information and user ratings from IMDB.com.
RedAmber::DataFrame : 58788 x 24 Vectors
Vectors : 22 numeric, 2 strings
#  key          type   level data_preview
1  :title       string 56007 ["$", "$1000 a Touchdown", "$21 a Day Once a Month", "$40,000", "$50,000 Climax Show, The", ... ]
2  :year        uint16   113 [1971, 1939, 1941, 1996, 1975, ... ]
3  :length      uint16   305 [121, 71, 7, 70, 71, ... ]
4  :budget      uint32   757 [nil, nil, nil, nil, nil, ... ], 53573 nils
5  :rating      double    91 [6.4, 6.0, 8.2, 8.2, 3.4, ... ]
6  :votes       uint32  4373 [348, 20, 5, 6, 17, ... ]
7  :r1          double    12 [4.5, 0.0, 0.0, 14.5, 24.5, ... ]
8  :r2          double    10 [4.5, 14.5, 0.0, 0.0, 4.5, ... ]
9  :r3          double    10 [4.5, 4.5, 0.0, 0.0, 0.0, ... ]
10 :r4          double    11 [4.5, 24.5, 0.0, 0.0, 14.5, ... ]
11 :r5          double    11 [14.5, 14.5, 0.0, 0.0, 14.5, ... ]
12 :r6          double    10 [24.5, 14.5, 24.5, 0.0, 4.5, ... ]
13 :r7          double    11 [24.5, 14.5, 0.0, 0.0, 0.0, ... ]
14 :r8          double    11 [14.5, 4.5, 44.5, 0.0, 0.0, ... ]
15 :r9          double    11 [4.5, 4.5, 24.5, 34.5, 0.0, ... ]
16 :r10         double    12 [4.5, 14.5, 24.5, 45.5, 24.5, ... ]
17 :mpaa        string     5 {""=>53864, "R"=>3377, "PG-13"=>1003, "PG"=>528, "NC-17"=>16}
18 :Action      uint8      2 {0=>54100, 1=>4688}
19 :Animation   uint8      2 {0=>55098, 1=>3690}
20 :Comedy      uint8      2 {1=>17271, 0=>41517}
 ... 4 more Vectors ...
Rdatasets: gt: gtcars, Deluxe automobiles from the 2014-2017 period
RedAmber::DataFrame : 47 x 15 Vectors
Vectors : 8 numeric, 7 strings
#  key          type   level data_preview
1  :mfr         string    19 ["Ford", "Ferrari", "Ferrari", "Ferrari", "Ferrari", ... ]
2  :model       string    47 ["GT", "458 Speciale", "458 Spider", "458 Italia", "488 GTB", ... ]
3  :year        uint16     4 {2017=>9, 2015=>9, 2014=>2, 2016=>27}
4  :trim        string    26 ["Base Coupe", "Base Coupe", "Base", "Base Coupe", "Base Coupe", ... ]
5  :bdy_style   string     4 {"coupe"=>32, "convertible"=>5, "sedan"=>8, "hatchback"=>2}
6  :hp          uint16    41 [647, 597, 562, 562, 661, ... ]
7  :hp_rpm      uint16    22 [6250, 9000, 9000, 9000, 8000, ... ]
8  :trq         uint16    37 [550, 398, 398, 398, 561, ... ]
9  :trq_rpm     uint16    25 [5900, 6000, 6000, 6000, 3000, ... ], 1 nil
10 :mpg_c       uint8     12 [11, 13, 13, 13, 15, ... ], 1 nil
11 :mpg_h       uint8     15 [18, 17, 17, 17, 22, ... ], 1 nil
12 :drivetrain  string     2 {"rwd"=>34, "awd"=>13}
13 :trsmn       string    10 ["7a", "7a", "7a", "7a", "7a", ... ]
14 :ctry_origin string     5 {"United States"=>4, "Italy"=>15, "Japan"=>2, "United Kingdom"=>10, "Germany"=>16}
15 :msrp        uint32    47 [447000, 291744, 263553, 233509, 245400, ... ]
Rdatasets: HistData: Pyx, Trial of the Pyx
RedAmber::DataFrame : 72 x 4 Vectors
Vectors : 1 numeric, 3 strings
# key        type   level data_preview
1 :Bags      string     9 ["1 and 2", "3", "4", "5", "6", ... ]
2 :Group     string     3 {"near std"=>24, "below std"=>24, "above std"=>24}
3 :Deviation string     8 ["Below -R", "Below -R", "Below -R", "Below -R", "Below -R", ... ]
4 :count     uint16    59 [34, 11, 20, 30, 32, ... ]
Rdatasets: MASS: Cars93, Data from 93 Cars on Sale in the USA in 1993
RedAmber::DataFrame : 93 x 27 Vectors
Vectors : 18 numeric, 9 strings
#  key                   type   level data_preview
1  :Manufacturer         string    32 ["Acura", "Acura", "Audi", "Audi", "BMW", ... ]
2  :Model                string    93 ["Integra", "Legend", "90", "100", "535i", ... ]
3  :Type                 string     6 ["Small", "Midsize", "Compact", "Midsize", "Midsize", ... ]
4  :"Min.Price"          double    79 [12.9, 29.2, 25.9, 30.8, 23.7, ... ]
5  :Price                double    81 [15.9, 33.9, 29.1, 37.7, 30.0, ... ]
6  :"Max.Price"          double    79 [18.8, 38.7, 32.3, 44.6, 36.2, ... ]
7  :"MPG.city"           uint8     21 [25, 18, 20, 19, 22, ... ]
8  :"MPG.highway"        uint8     22 [31, 25, 26, 26, 30, ... ]
9  :AirBags              string     3 {"None"=>34, "Driver & Passenger"=>16, "Driver only"=>43}
10 :DriveTrain           string     3 {"Front"=>67, "Rear"=>16, "4WD"=>10}
11 :Cylinders            string     6 ["4", "6", "6", "6", "4", ... ]
12 :EngineSize           double    26 [1.8, 3.2, 2.8, 2.8, 3.5, ... ]
13 :Horsepower           uint16    57 [140, 200, 172, 172, 208, ... ]
14 :RPM                  uint16    24 [6300, 5500, 5500, 5500, 5700, ... ]
15 :"Rev.per.mile"       uint16    78 [2890, 2335, 2280, 2535, 2545, ... ]
16 :"Man.trans.avail"    string     2 {"Yes"=>61, "No"=>32}
17 :"Fuel.tank.capacity" double    38 [13.2, 18.0, 16.9, 21.1, 21.1, ... ]
18 :Passengers           uint8      6 [5, 5, 5, 6, 4, ... ]
19 :Length               uint8     51 [177, 195, 180, 193, 186, ... ]
20 :Wheelbase            uint8     27 [102, 115, 102, 106, 109, ... ]
 ... 7 more Vectors ...
Rdatasets: mosaicData: Galton, Galton's dataset of parent and child heights
RedAmber::DataFrame : 898 x 6 Vectors
Vectors : 4 numeric, 2 strings
# key     type   level data_preview
1 :family string   197 ["1", "1", "1", "1", "2", ... ]
2 :father double    34 [78.5, 78.5, 78.5, 78.5, 75.5, ... ]
3 :mother double    29 [67.0, 67.0, 67.0, 67.0, 66.5, ... ]
4 :sex    string     2 {"M"=>465, "F"=>433}
5 :height double    65 [73.2, 69.2, 69.0, 69.0, 73.5, ... ]
6 :nkids  uint8     12 [4, 4, 4, 4, 4, ... ]
Rdatasets: mosaicData: HELPfull, Health Evaluation and Linkage to Primary Care
RedAmber::DataFrame : 1472 x 788 Vectors
Vectors : 782 numeric, 6 strings
#   key              type   level data_preview
1   :ID              uint16   470 [1, 1, 1, 1, 2, ... ]
2   :TIME            uint8      5 {0=>470, 6=>254, 18=>254, 24=>277, 12=>217}
3   :NUM_INTERVALS   uint8      4 {1=>1238, 2=>132, 3=>72, 4=>30}
4   :INT_TIME1       double   491 [0.0, 8.03333333333333, 15.5333333333333, 27.5666666666667, 0.0, ... ]
5   :DAYS_SINCE_BL   uint16   491 [nil, 241, 466, 827, nil, ... ], 470 nils
6   :INT_TIME2       double   350 [6.0, 8.03333333333333, 7.5, 12.0333333333333, 6.0, ... ]
7   :DAYS_SINCE_PREV uint16   351 [nil, 241, 225, 361, nil, ... ], 470 nils
8   :PREV_TIME       uint8      5 {nil=>470, 0=>400, 6=>216, 18=>202, 12=>184}
9   :DEAD            uint8      2 {0=>1410, 1=>62}
10  :A1              uint8      3 {1=>359, nil=>1002, 2=>111}
11  :A9              uint8     17 [9, nil, nil, nil, 12, ... ], 1005 nils
12  :A10             uint8      7 [1, 2, 1, 4, 6, ... ], 7 nils
13  :A11A            uint8      3 {1=>1130, 0=>322, nil=>20}
14  :A11B            uint8      3 {0=>625, 1=>790, nil=>57}
15  :A11C            uint8      3 {1=>1364, 0=>96, nil=>12}
16  :A11D            uint8      3 {1=>804, 0=>652, nil=>16}
17  :A11E            uint8      3 {1=>1001, 0=>461, nil=>10}
18  :A12B            uint8     10 [6, nil, nil, nil, 6, ... ], 1005 nils
19  :A13             uint8      7 [1, 2, 1, 1, 4, ... ], 8 nils
20  :A14A            uint8      3 {0=>1199, 1=>265, nil=>8}
 ... 768 more Vectors ...
Rdatasets: nycflights13: airports, Airport metadata
RedAmber::DataFrame : 1458 x 8 Vectors
Vectors : 4 numeric, 4 strings
# key    type   level data_preview
1 :faa   string  1458 ["04G", "06A", "06C", "06N", "09J", ... ]
2 :name  string  1440 ["Lansdowne Airport", "Moton Field Municipal Airport", "Schaumburg Regional", "Randall Airport", "Jekyll Island Airport", ... ]
3 :lat   double  1456 [41.1304722, 32.4605722, 41.9893408, 41.431912, 31.0744722, ... ]
4 :lon   double  1458 [-80.6195833, -85.6800278, -88.1012428, -74.3915611, -81.4277778, ... ]
5 :alt   int16    911 [1044, 264, 801, 523, 11, ... ]
6 :tz    int8       7 [-5, -6, -6, -5, -5, ... ]
7 :dst   string     3 {"A"=>1388, "U"=>47, "N"=>23}
8 :tzone string    10 ["America/New_York", "America/Chicago", "America/Chicago", "America/New_York", "America/New_York", ... ], 3 nils
Rdatasets: nycflights13: planes, Plane metadata.
RedAmber::DataFrame : 3322 x 9 Vectors
Vectors : 4 numeric, 5 strings
# key           type   level data_preview
1 :tailnum      string  3322 ["N10156", "N102UW", "N103US", "N104UW", "N10575", ... ]
2 :year         uint16    47 [2004, 1998, 1999, 1999, 2002, ... ], 70 nils
3 :type         string     3 {"Fixed wing multi engine"=>3292, "Fixed wing single engine"=>25, "Rotorcraft"=>5}
4 :manufacturer string    35 ["EMBRAER", "AIRBUS INDUSTRIE", "AIRBUS INDUSTRIE", "AIRBUS INDUSTRIE", "EMBRAER", ... ]
5 :model        string   127 ["EMB-145XR", "A320-214", "A320-214", "A320-214", "EMB-145LR", ... ]
6 :engines      uint8      4 {2=>3288, 1=>27, 4=>4, 3=>3}
7 :seats        uint16    48 [55, 182, 182, 182, 55, ... ]
8 :speed        uint16    14 [nil, nil, nil, nil, nil, ... ], 3299 nils
9 :engine       string     6 ["Turbo-fan", "Turbo-fan", "Turbo-fan", "Turbo-fan", "Turbo-fan", ... ]
Rdatasets: openintro: birds, Aircraft-Wildlife Collisions
RedAmber::DataFrame : 19302 x 17 Vectors
Vectors : 4 numeric, 13 strings
#  key           type   level data_preview
1  :opid         string   285 ["AAL", "USA", "AAL", "AAL", "AAL", ... ]
2  :operator     string   285 ["AMERICAN AIRLINES", "US AIRWAYS", "AMERICAN AIRLINES", "AMERICAN AIRLINES", "AMERICAN AIRLINES", ... ]
3  :atype        string   284 ["MD-80", "FK-28-4000", "B-727-200", "MD-82", "MD-82", ... ]
4  :remarks      string 13737 ["NO DAMAGE", "2 BIRDS, NO DAMAGE.", nil, nil, "NO DAMAGE", ... ], 2786 nils
5  :phase_of_flt string     9 ["Descent", "Climb", "Approach", "Climb", "Climb", ... ], 1783 nils
6  :ac_mass      uint8      6 [4, 4, 4, 4, 4, ... ], 1284 nils
7  :num_engs     uint8      5 {2=>13817, 3=>2048, 1=>1526, 4=>604, nil=>1307}
8  :date         string  3186 ["9/30/1990 0:00:00", "11/29/1993 0:00:00", "8/13/1993 0:00:00", "10/7/1993 0:00:00", "9/25/1993 0:00:00", ... ]
9  :time_of_day  string     5 {"Night"=>4537, "Day"=>11170, "Dusk"=>878, "Dawn"=>640, nil=>2077}
10 :state        string    59 ["IL", "MD", "TN", "VA", "SC", ... ], 871 nils
11 :height       uint16   298 [7000, 10, 400, 100, 50, ... ], 3193 nils
12 :speed        uint16   159 [250, 140, 140, 200, 170, ... ], 7008 nils
13 :effect       string     6 [nil, "None", "None", "None", "None", ... ], 5718 nils
14 :sky          string     4 {"No Cloud"=>7113, "Some Cloud"=>5254, "Overcast"=>3356, nil=>3579}
15 :species      string   241 ["UNKNOWN BIRD - MEDIUM", "UNKNOWN BIRD - MEDIUM", "UNKNOWN BIRD - SMALL", "UNKNOWN BIRD - SMALL", "UNKNOWN BIRD - SMALL", ... ]
16 :birds_seen   string     4 {nil=>14538, "2-10"=>3775, "11-100"=>988, ":-10"=>1}
17 :birds_struck string     6 ["1", "2-10", "1", "1", "1", ... ], 39 nils
Rdatasets: openintro: cards, Deck of cards
RedAmber::DataFrame : 52 x 4 Vectors
Vectors : 4 strings
# key    type   level data_preview
1 :value string    13 ["2", "3", "4", "5", "6", ... ]
2 :color string     2 {"red"=>26, "black"=>26}
3 :suit  string     4 {"Heart"=>13, "Diamond"=>13, "Spade"=>13, "Club"=>13}
4 :face  string     2 {"FALSE"=>36, "TRUE"=>16}
Rdatasets: openintro: cpu, CPU's Released between 2010 and 2020.
RedAmber::DataFrame : 875 x 12 Vectors
Vectors : 7 numeric, 4 strings, 1 temporal
#  key          type   level data_preview
1  :company     string     2 {"Intel"=>571, "AMD"=>304}
2  :name        string   859 ["Pentium E5500", "Pentium E6700", "Pentium E5700", "Celeron E3500", "Pentium E6800", ... ]
3  :codename    string   102 ["Wolfdale", "Wolfdale", "Wolfdale", "Wolfdale", "Wolfdale", ... ]
4  :cores       uint8     24 [2, 2, 2, 2, 2, ... ]
5  :threads     uint16    27 [2, 2, 2, 2, 2, ... ]
6  :base_clock  double    59 [2.8, 3.2, 3.0, 2.7, 3.333, ... ]
7  :boost_clock double    54 [nil, nil, nil, nil, nil, ... ], 318 nils
8  :socket      string    60 ["775", "775", "775", "775", "775", ... ]
9  :process     uint8      9 [45, 45, 45, 45, 45, ... ]
10 :l3_cache    uint16    30 [nil, nil, nil, nil, nil, ... ], 185 nils
11 :tdp         uint16    77 [65, 65, 65, 65, 65, ... ]
12 :released    date64   194 [#<DateTime: 2010-04-18T09:00:00+09:00 ((2455305j,0s,0n),+32400s,2299161j)>, #<DateTime: 2010-05-30T09:00:00+09:00 ((2455347j,0s,0n),+32400s,2299161j)>, ... ]
Rdatasets: openintro: epa2012, Vehicle info from the EPA for 2012
RedAmber::DataFrame : 1129 x 28 Vectors
Vectors : 8 numeric, 19 strings, 1 temporal
#  key                    type   level data_preview
1  :model_yr              uint16     1 {2012=>1129}
2  :mfr_name              string    34 ["aston martin", "aston martin", "aston martin", "aston martin", "aston martin", ... ]
3  :division              string    46 ["Aston Martin Lagonda Ltd", "Aston Martin Lagonda Ltd", "Aston Martin Lagonda Ltd", "Aston Martin Lagonda Ltd", "Aston Martin Lagonda Ltd", ... ]
4  :carline               string   672 ["V12 Vantage", "V8 Vantage", "V8 Vantage", "V8 Vantage", "V8 Vantage S", ... ]
5  :mfr_code              string    33 ["ASX", "ASX", "ASX", "ASX", "ASX", ... ]
6  :model_type_index      uint16   416 [8, 2, 11, 1, 3, ... ]
7  :engine_displacement   double    47 [5.9, 4.7, 4.7, 4.7, 4.7, ... ]
8  :no_cylinders          uint8      9 [12, 8, 8, 8, 8, ... ], 7 nils
9  :transmission_speed    string    22 ["Manual(M6)", "Auto(AM6)", "Auto(AM7)", "Manual(M6)", "Auto(AM7)", ... ]
10 :city_mpg              uint8     39 [11, 14, 14, 13, 14, ... ]
11 :hwy_mpg               uint8     39 [17, 20, 21, 19, 21, ... ]
12 :comb_mpg              uint8     40 [13, 16, 16, 15, 16, ... ]
13 :guzzler               string     2 {"Y"=>84, "N"=>1045}
14 :air_aspir_method      string     3 {nil=>857, "TC"=>244, "SC"=>28}
15 :air_aspir_method_desc string     4 {"Naturally Aspirated"=>850, "Turbocharged"=>244, "Supercharged"=>28, nil=>7}
16 :transmission          string     7 ["M", "AM", "AM", "M", "AM", ... ]
17 :transmission_desc     string     7 ["Manual", "Automated Manual", "Automated Manual", "Manual", "Automated Manual", ... ]
18 :no_gears              uint8      6 [6, 6, 7, 6, 7, ... ]
19 :trans_lockup          string     2 {"N"=>309, "Y"=>820}
20 :trans_creeper_gear    string     1 {"N"=>1129}
 ... 8 more Vectors ...
Rdatasets: openintro: epa2021, Vehicle info from the EPA for 2021
RedAmber::DataFrame : 1108 x 28 Vectors
Vectors : 8 numeric, 19 strings, 1 temporal
#  key                    type   level data_preview
1  :model_yr              uint16     1 {2021=>1108}
2  :mfr_name              string    22 ["Honda", "aston martin", "aston martin", "Volkswagen Group of", "Volkswagen Group of", ... ]
3  :division              string    41 ["Acura", "Aston Martin Lagonda Ltd", "Aston Martin Lagonda Ltd", "Audi", "Audi", ... ]
4  :carline               string   788 ["NSX", "Vantage Manual", "Vantage V8", "R8", "R8 2WD", ... ]
5  :mfr_code              string    22 ["HNX", "ASX", "ASX", "VGA", "VGA", ... ]
6  :model_type_index      uint16   502 [39, 5, 4, 5, 7, ... ]
7  :engine_displacement   double    39 [3.5, 4.0, 4.0, 5.2, 5.2, ... ]
8  :no_cylinders          uint8      8 [6, 8, 8, 10, 10, ... ]
9  :transmission_speed    string    25 ["Auto(AM-S9)", "Manual(M7)", "Auto(S8)", "Auto(AM-S7)", "Auto(AM-S7)", ... ]
10 :city_mpg              uint8     43 [21, 14, 18, 13, 14, ... ]
11 :hwy_mpg               uint8     44 [22, 21, 24, 20, 23, ... ]
12 :comb_mpg              uint8     45 [21, 17, 20, 16, 17, ... ]
13 :guzzler               string     2 {"N"=>1044, "Y"=>64}
14 :air_aspir_method      string     5 {"TC"=>628, nil=>439, "SC"=>27, "OT"=>8, "TS"=>6}
15 :air_aspir_method_desc string     5 {"Turbocharged"=>628, "Naturally Aspirated"=>439, "Supercharged"=>27, "Other"=>8, "Turbocharged+Supercharged"=>6}
16 :transmission          string     7 ["AMS", "M", "SA", "AMS", "AMS", ... ]
17 :transmission_desc     string     7 ["Automated Manual- Selectable (e.g. Automated Manual with paddles)", "Manual", "Semi-Automatic", "Automated Manual- Selectable (e.g. Automated Manual with paddles)", "Automated Manual- Selectable (e.g. Automated Manual with paddles)", ... ]
18 :no_gears              uint8      7 [9, 7, 8, 7, 7, ... ]
19 :trans_lockup          string     2 {"Y"=>879, "N"=>229}
20 :trans_creeper_gear    string     2 {"N"=>1107, "Y"=>1}
 ... 8 more Vectors ...
Rdatasets: openintro: kobe_basket, Kobe Bryant basketball performance
RedAmber::DataFrame : 133 x 6 Vectors
Vectors : 1 numeric, 5 strings
# key          type   level data_preview
1 :vs          string     1 {"ORL"=>133}
2 :game        uint8      5 {1=>34, 2=>21, 4=>30, 5=>23, 3=>25}
3 :quarter     string     5 {"1"=>36, "2"=>25, "3"=>34, "4"=>31, "1OT"=>7}
4 :time        string   116 ["9:47", "9:07", "8:11", "7:41", "7:03", ... ]
5 :description string    80 ["Kobe Bryant makes 4-foot two point shot", "Kobe Bryant misses jumper", "Kobe Bryant misses 7-foot jumper", "Kobe Bryant makes 16-foot jumper (Derek Fisher assists)", "Kobe Bryant makes driving layup", ... ]
6 :shot        string     2 {"H"=>58, "M"=>75}
Rdatasets: openintro: labor_market_discrimination, Are Emily and Greg More Employable Than Lakisha and Jamal?
RedAmber::DataFrame : 4870 x 63 Vectors
Vectors : 55 numeric, 8 strings
#  key                   type   level data_preview
1  :education            uint8      5 {4=>3504, 3=>1006, 1=>40, 2=>274, 0=>46}
2  :n_jobs               uint8      7 [2, 3, 1, 4, 3, ... ]
3  :years_exp            uint8     26 [6, 6, 6, 6, 22, ... ]
4  :honors               uint8      2 {0=>4613, 1=>257}
5  :volunteer            uint8      2 {0=>2866, 1=>2004}
6  :military             uint8      2 {0=>4397, 1=>473}
7  :emp_holes            uint8      2 {1=>2182, 0=>2688}
8  :occup_specific       uint16    61 [17, 316, 19, 313, 313, ... ]
9  :occup_broad          uint8      5 {1=>1770, 6=>1248, 5=>450, 4=>1241, 3=>161}
10 :work_in_school       uint8      2 {0=>2145, 1=>2725}
11 :email                uint8      2 {0=>2536, 1=>2334}
12 :computer_skills      uint8      2 {1=>3996, 0=>874}
13 :special_skills       uint8      2 {0=>3269, 1=>1601}
14 :first_name           string    36 ["Allison", "Kristen", "Lakisha", "Latonya", "Carrie", ... ]
15 :sex                  string     2 {"f"=>3746, "m"=>1124}
16 :race                 string     2 {"w"=>2435, "b"=>2435}
17 :h                    uint8      2 {0=>2424, 1=>2446}
18 :l                    uint8      2 {1=>2424, 0=>2446}
19 :call                 uint8      2 {0=>4478, 1=>392}
20 :city                 string     2 {"c"=>2704, "b"=>2166}
 ... 43 more Vectors ...
Rdatasets: openintro: nba_players_19, NBA Players for the 2018-2019 season
RedAmber::DataFrame : 494 x 7 Vectors
Vectors : 1 numeric, 6 strings
# key         type   level data_preview
1 :first_name string   380 ["Alex", "Jaylen", "Steven", "Bam", "DeVaughn", ... ]
2 :last_name  string   413 ["Abrines", "Adams", "Adams", "Adebayo", "Akoon-Purcell", ... ]
3 :team       string    30 ["Thunder", "Hawks", "Thunder", "Heat", "Nuggets", ... ]
4 :team_abbr  string    30 ["OKC", "ATL", "OKC", "MIA", "DEN", ... ]
5 :position   string     7 ["Guard", "Guard", "Center", "Center-Forward", "Guard-Forward", ... ]
6 :number     string    56 ["8", "10", "12", "13", "23", ... ]
7 :height     uint8     19 [78, 74, 84, 82, 78, ... ]
Rdatasets: openintro: playing_cards, Table of Playing Cards in 52-Card Deck
RedAmber::DataFrame : 52 x 3 Vectors
Vectors : 3 strings
# key        type   level data_preview
1 :number    string    13 ["2", "3", "4", "5", "6", ... ]
2 :suit      string     4 {"Spade"=>13, "Diamond"=>13, "Club"=>13, "Heart"=>13}
3 :face_card string     2 {"no"=>36, "yes"=>16}
Rdatasets: openintro: reddit_finance, Reddit Survey on Financial Independence.
RedAmber::DataFrame : 1998 x 65 Vectors
Vectors : 36 numeric, 29 strings
#  key                      type   level data_preview
1  :num_incomes             string     5 {"1"=>1155, "2"=>835, "3"=>5, nil=>1, ">3"=>2}
2  :pan_inc_chg             string     4 {"Stayed the same"=>1205, "Increased"=>523, "Decreased"=>261, nil=>9}
3  :pan_inc_chg_pct         string    12 ["No change", "No change", "1-10%", "41-50%", "1-10%", ... ], 19 nils
4  :pan_exp_chg             string     4 {"Decreased"=>1328, "Stayed the same"=>504, "Increased"=>155, nil=>11}
5  :pan_exp_chg_pct         string    12 ["11-20%", "1-10%", "1-10%", "11-20%", "11-20%", ... ], 31 nils
6  :pan_fi_chg              string     4 {"No change"=>1644, "Increase"=>288, "Decrease"=>40, nil=>26}
7  :pan_ret_date_chg        string     4 {"No change"=>1495, "Become sooner"=>376, "Become later"=>104, nil=>23}
8  :pan_financial_impact    string     4 {"Neutral"=>800, "Positive"=>1113, "Negative"=>75, nil=>10}
9  :political               string    25 [nil, nil, nil, nil, nil, ... ], 290 nils
10 :race_eth                string     8 ["White / Caucasian", "White / Caucasian", "White / Caucasian", "White / Caucasian", "Asian or Pacific Islander", ... ], 19 nils
11 :gender                  string     7 ["Male", "Male", "Male", "Male", "Male", ... ], 8 nils
12 :age                     string    12 ["24-28", "29-33", "29-33", "24-28", "29-33", ... ], 2 nils
13 :edu                     string    12 ["Bachelor's Degree", "Bachelor's Degree", "Bachelor's Degree", "Some college, no degree", "Bachelor's Degree", ... ], 5 nils
14 :rel_status              string     9 ["Single, never married", "Married", "In a relationship, but not married", "Single, never married", "In a relationship, but not married", ... ], 3 nils
15 :children                string     5 {"Do not have children, but intend to"=>866, "Do not have children, and do not intend to"=>613, "Have children"=>457, "N/A"=>50, nil=>12}
16 :country                 string    54 ["Australia", "Australia", "Australia", "Australia", "Australia", ... ]
17 :fin_indy                string     2 {"No"=>1851, "Yes"=>147}
18 :fin_indy_num            double   156 [3500000.0, 1000000.0, 1000000.0, 750000.0, 2800000.0, ... ], 220 nils
19 :fin_indy_pct            double   244 [12.0, 26.0, 8.0, 27.0, 78.0, ... ], 226 nils
20 :retire_invst_num        double   153 [2500000.0, 1250000.0, 1750000.0, 2000000.0, 4800000.0, ... ], 286 nils
 ... 45 more Vectors ...
Rdatasets: openintro: resume, Which resume attributes drive job callbacks?
RedAmber::DataFrame : 4870 x 30 Vectors
Vectors : 20 numeric, 10 strings
#  key                     type   level data_preview
1  :job_ad_id              uint16  1323 [384, 384, 384, 384, 385, ... ]
2  :job_city               string     2 {"Chicago"=>2704, "Boston"=>2166}
3  :job_industry           string     6 ["manufacturing", "manufacturing", "manufacturing", "manufacturing", "other_service", ... ]
4  :job_type               string     6 ["supervisor", "supervisor", "supervisor", "supervisor", "secretary", ... ]
5  :job_fed_contractor     uint8      3 {nil=>1768, 0=>2746, 1=>356}
6  :job_equal_opp_employer uint8      2 {1=>1418, 0=>3452}
7  :job_ownership          string     4 {"unknown"=>1992, "nonprofit"=>318, "private"=>2134, "public"=>426}
8  :job_req_any            uint8      2 {1=>3834, 0=>1036}
9  :job_req_communication  uint8      2 {0=>4262, 1=>608}
10 :job_req_education      uint8      2 {0=>4350, 1=>520}
11 :job_req_min_experience string    13 ["5", "5", "5", "5", "some", ... ]
12 :job_req_computer       uint8      2 {1=>2129, 0=>2741}
13 :job_req_organization   uint8      2 {0=>4516, 1=>354}
14 :job_req_school         string     4 {"none_listed"=>4350, "some_college"=>252, "college"=>222, "high_school_grad"=>46}
15 :received_callback      uint8      2 {0=>4478, 1=>392}
16 :firstname              string    36 ["Allison", "Kristen", "Lakisha", "Latonya", "Carrie", ... ]
17 :race                   string     2 {"white"=>2435, "black"=>2435}
18 :gender                 string     2 {"f"=>3746, "m"=>1124}
19 :years_college          uint8      5 {4=>3504, 3=>1006, 1=>40, 2=>274, 0=>46}
20 :college_degree         uint8      2 {1=>3504, 0=>1366}
 ... 10 more Vectors ...
Rdatasets: openintro: seattlepets, Names of pets in Seattle
RedAmber::DataFrame : 52519 x 7 Vectors
Vectors : 6 strings, 1 temporal
# key                 type   level data_preview
1 :license_issue_date date64  1064 [#<DateTime: 2018-11-16T09:00:00+09:00 ((2458439j,0s,0n),+32400s,2299161j)>, #<DateTime: 2018-11-11T09:00:00+09:00 ((2458434j,0s,0n),+32400s,2299161j)>, ... ]
2 :license_number     string 52497 ["8002756", "S124529", "903793", "824666", "S119138", ... ]
3 :animal_name        string 13930 ["Wall-E", "Andre", "Mac", "Melb", "Gingersnap", ... ], 483 nils
4 :species            string     4 {"Dog"=>35181, "Cat"=>17294, "Goat"=>38, "Pig"=>6}
5 :primary_breed      string   336 ["Mixed Breed, Medium (up to 44 lbs fully grown)", "Terrier, Jack Russell", "Retriever, Labrador", "Domestic Shorthair", "Domestic Shorthair", ... ]
6 :secondary_breed    string   261 ["Mix", "Dachshund, Standard Wire Haired", nil, nil, "Mix", ... ], 29517 nils
7 :zip_code           string   168 ["98108", "98117", "98136", "98117", "98144", ... ], 397 nils
Rdatasets: openintro: sowc_child_mortality, SOWC Child Mortality Data.
RedAmber::DataFrame : 195 x 18 Vectors
Vectors : 16 numeric, 2 strings
#  key                             type   level data_preview
1  :countries_and_areas            string   195 ["Afghanistan", "Albania", "Algeria", "Andorra", "Angola", ... ]
2  :under5_mortality_1990          uint16   106 [179, 41, 50, 11, 223, ... ]
3  :under5_mortality_2000          uint8    102 [129, 26, 40, 6, 206, ... ]
4  :under5_mortality_2018          uint8     73 [62, 9, 23, 3, 77, ... ]
5  :under5_reduction               double    72 [4.1, 6.0, 2.9, 4.4, 5.4, ... ]
6  :under5_mortality_2018_male     uint8     73 [66, 9, 25, 3, 83, ... ]
7  :under5_mortality_2018_female   uint8     70 [59, 8, 22, 3, 71, ... ]
8  :infant_mortality_1990          uint8     89 [121, 35, 42, 9, 132, ... ]
9  :infant_mortality_2018          uint8     64 [48, 8, 20, 3, 52, ... ]
10 :neonatal_mortality_1990        uint8     56 [75, 13, 23, 6, 54, ... ]
11 :neonatal_mortality_2000        uint8     52 [61, 12, 21, 3, 51, ... ]
12 :neonatal_mortality_2018        uint8     41 [37, 7, 15, 1, 28, ... ]
13 :prob_dying_age5to14_1990       uint8     45 [16, 7, 9, 7, 46, ... ]
14 :prob_dying_age5to14_2018       uint8     29 [5, 2, 4, 1, 16, ... ]
15 :under5_deaths_2018             uint16    59 [74, 0, 24, 0, 94, ... ]
16 :neonatal_deaths_2018           uint16    38 [45, 0, 15, 0, 36, ... ]
17 :neonatal_deaths_percent_under5 string    45 ["60", "74", "62", "50", "38", ... ]
18 :age5to14_deaths_2018           uint8     27 [5, 0, 3, 0, 15, ... ]
Rdatasets: openintro: sp500_seq, S&P 500 stock data
RedAmber::DataFrame : 2948 x 1 Vector
Vector : 1 string
# key   type   level data_preview
1 :race string     7 ["1", "1", "1", "1", "1", ... ]
Rdatasets: openintro: ssd_speed, SSD read and write speeds
RedAmber::DataFrame : 54 x 7 Vectors
Vectors : 4 numeric, 3 strings
# key          type   level data_preview
1 :brand       string    17 ["Corsair", "Samsung", "Samsung", "Samsung", "Samsung", ... ]
2 :model       string    52 ["Force MP600", "840 Evo", "960 Evo", "850 Pro", "970 Pro", ... ]
3 :samples     uint32    54 [11526, 16888, 25990, 14690, 21981, ... ]
4 :form_factor string     3 {"m.2"=>32, "2.5"=>21, "mSATA"=>1}
5 :nvme        uint8      2 {1=>30, 0=>24}
6 :read        uint16    53 [1958, 470, 1798, 476, 2327, ... ]
7 :write       uint16    52 [3144, 389, 1562, 418, 2056, ... ]
Rdatasets: openintro: textbooks, Textbook data for UCLA Bookstore and Amazon
RedAmber::DataFrame : 73 x 7 Vectors
Vectors : 3 numeric, 4 strings
# key        type   level data_preview
1 :dept_abbr string    41 ["Am Ind", "Anthro", "Anthro", "Anthro", "Art His", ... ]
2 :course    string    66 [" C170", "9", "135T", "191HB", "M102K", ... ]
3 :isbn      string    73 ["978-0803272620", "978-0030119194", "978-0300080643", "978-0226206813", "978-0892365999", ... ]
4 :ucla_new  double    65 [27.67, 40.59, 31.68, 16.0, 18.95, ... ]
5 :amaz_new  double    71 [27.95, 31.14, 32.0, 11.52, 14.21, ... ]
6 :more      string     2 {"Y"=>45, "N"=>28}
7 :diff      double    71 [-0.28, 9.45, -0.32, 4.48, 4.74, ... ]
Rdatasets: openintro: ucla_f18, UCLA courses in Fall 2018
RedAmber::DataFrame : 3950 x 14 Vectors
Vectors : 2 numeric, 12 strings
#  key               type   level data_preview
1  :year             uint16     1 {2018=>3950}
2  :term             string     1 {"Fall"=>3950}
3  :subject          string   173 ["Aerospace Studies", "Aerospace Studies", "Aerospace Studies", "Aerospace Studies", "Aerospace Studies", ... ]
4  :subject_abbr     string   156 ["AERO ST", "AERO ST", "AERO ST", "AERO ST", "AERO ST", ... ], 552 nils
5  :course           string  3124 ["Leadership Laboratory", "Heritage and Values", "Team and Leadership Fundamentals", "Air Force Leadership Studies", "National Security Affairs/Preparation for Active Duty", ... ]
6  :course_num       string  1602 ["A", "1A", "20A", "130A", "140A", ... ]
7  :course_numeric   uint16   444 [nil, 1, 20, 130, 140, ... ], 3 nils
8  :seminar          string     2 {"FALSE"=>3548, "TRUE"=>402}
9  :ind_study        string     2 {"FALSE"=>3407, "TRUE"=>543}
10 :apprenticeship   string     2 {"FALSE"=>3864, "TRUE"=>86}
11 :internship       string     2 {"FALSE"=>3900, "TRUE"=>50}
12 :honors_contracts string     2 {"FALSE"=>3916, "TRUE"=>34}
13 :laboratory       string     2 {"TRUE"=>72, "FALSE"=>3878}
14 :special_topic    string     2 {"TRUE"=>1182, "FALSE"=>2768}
Rdatasets: openintro: ucla_textbooks_f18, Sample of UCLA course textbooks for Fall 2018
RedAmber::DataFrame : 201 x 20 Vectors
Vectors : 7 numeric, 13 strings
#  key               type   level data_preview
1  :year             uint64     2 {2018=>200, 9780133356038=>1}
2  :term             string     2 {"Fall"=>200, "199.96"=>1}
3  :subject          string    75 ["American Indian Studies", "Anthropology", "Art", "Arts and Architecture", "Asian", ... ]
4  :subject_abbr     string    65 ["AM IND", "ANTHRO", nil, "ART&ARC", nil, ... ], 33 nils
5  :course           string   190 ["Introduction to American Indian Studies", "Archaeology: Introduction", "New Genres", "Arts Encounters: Exploring Arts Literacy in 21st Century", "Introduction to Buddhism", ... ], 1 nil
6  :course_num       string   116 ["M10", "2", "11D", "10", "M60W", ... ], 1 nil
7  :course_numeric   uint8     52 [10, 2, 11, 10, 60, ... ], 1 nil
8  :seminar          string     2 {"FALSE"=>200, nil=>1}
9  :ind_study        string     2 {"FALSE"=>200, nil=>1}
10 :apprenticeship   string     2 {"FALSE"=>200, nil=>1}
11 :internship       string     2 {"FALSE"=>200, nil=>1}
12 :honors_contracts string     2 {"FALSE"=>200, nil=>1}
13 :laboratory       string     2 {"FALSE"=>200, nil=>1}
14 :special_topic    string     2 {"FALSE"=>200, nil=>1}
15 :textbook_isbn    uint64    80 [9781138477858, 9780307741806, nil, 9780979757549, 9780199861873, ... ], 112 nils
16 :bookstore_new    double    75 [47.97, 14.26, nil, 13.5, 49.26, ... ], 112 nils
17 :bookstore_used   double    62 [44.97, 10.96, nil, 11.0, 43.26, ... ], 125 nils
18 :amazon_new       double    58 [47.45, 13.55, nil, 12.53, 54.95, ... ], 133 nils
19 :amazon_used      double    62 [51.2, 7.1, nil, nil, 24.83, ... ], 129 nils
20 :notes            string    19 ["", "", nil, "", nil, ... ], 131 nils
Rdatasets: openintro: yrbss, Youth Risk Behavior Surveillance System (YRBSS)
RedAmber::DataFrame : 13583 x 13 Vectors
Vectors : 5 numeric, 8 strings
#  key                       type   level data_preview
1  :age                      uint8      8 [14, 14, 15, 15, 15, ... ], 77 nils
2  :gender                   string     3 {"female"=>6621, "male"=>6950, nil=>12}
3  :grade                    string     6 ["9", "9", "9", "9", "9", ... ], 79 nils
4  :hispanic                 string     3 {"not"=>9928, "hispanic"=>3424, nil=>231}
5  :race                     string     6 ["Black or African American", "Black or African American", "Native Hawaiian or Other Pacific Islander", "Black or African American", "Black or African American", ... ], 2805 nils
6  :height                   double    35 [nil, nil, 1.73, 1.6, 1.5, ... ], 1004 nils
7  :weight                   double   240 [nil, nil, 84.37, 55.79, 46.72, ... ], 1004 nils
8  :helmet_12m               string     7 ["never", "never", "never", "never", "did not ride", ... ], 311 nils
9  :text_while_driving_30d   string     9 ["0", nil, "30", "0", "did not drive", ... ], 918 nils
10 :physically_active_7d     uint8      9 [4, 2, 7, 0, 2, ... ], 273 nils
11 :hours_tv_per_school_day  string     8 ["5+", "5+", "5+", "2", "3", ... ], 338 nils
12 :strength_training_7d     uint8      9 [0, 0, 0, 0, 1, ... ], 1176 nils
13 :school_night_hours_sleep string     8 ["8", "6", "<5", "6", "9", ... ], 1248 nils
Rdatasets: openintro: yrbss_samp, Sample of Youth Risk Behavior Surveillance System (YRBSS)
RedAmber::DataFrame : 100 x 13 Vectors
Vectors : 6 numeric, 7 strings
#  key                       type   level data_preview
1  :age                      uint8      6 [16, 17, 17, 15, 18, ... ], 1 nil
2  :gender                   string     3 {"female"=>51, "male"=>48, nil=>1}
3  :grade                    uint8      5 {11=>26, 10=>26, 12=>22, 9=>25, nil=>1}
4  :hispanic                 string     3 {"not"=>77, "hispanic"=>22, nil=>1}
5  :race                     string     5 {"Black or African American"=>23, "White"=>53, nil=>22, "American Indian or Alaska Native"=>1, "Native Hawaiian or Other Pacific Islander"=>1}
6  :height                   double    22 [1.5, 1.78, 1.75, 1.68, 1.7, ... ]
7  :weight                   double    61 [52.62, 74.84, 106.6, 66.68, 80.29, ... ]
8  :helmet_12m               string     7 ["never", "rarely", "never", "never", "never", ... ], 1 nil
9  :text_while_driving_30d   string     9 ["1-2", "0", "0", "did not drive", "did not drive", ... ], 8 nils
10 :physically_active_7d     uint8      8 [0, 7, 7, 3, 0, ... ]
11 :hours_tv_per_school_day  string     8 ["4", "1", "2", "2", "2", ... ], 5 nils
12 :strength_training_7d     uint8      8 [0, 5, 0, 1, 2, ... ]
13 :school_night_hours_sleep string     8 ["8", "7", "7", "5", "6", ... ], 9 nils
Rdatasets: rpart: car90, Automobile Data from 'Consumer Reports' 1990
RedAmber::DataFrame : 111 x 34 Vectors
Vectors : 25 numeric, 9 strings
#  key             type   level data_preview
1  :Country        string    11 ["Japan", "Japan", "Germany", "Germany", "Germany", ... ], 6 nils
2  :Disp           uint16    51 [112, 163, 141, 121, 152, ... ], 3 nils
3  :Disp2          double    26 [1.8, 2.7, 2.3, 2.0, 2.5, ... ], 3 nils
4  :"Eng.Rev"      uint16    60 [2935, 2505, 2775, 2835, 2625, ... ], 38 nils
5  :"Front.Hd"     double    10 [3.5, 2.0, 2.5, 4.0, 2.0, ... ]
6  :"Frt.Leg.Room" double    10 [41.5, 41.5, 41.5, 42.0, 42.0, ... ]
7  :"Frt.Shld"     double    24 [53.0, 55.5, 56.5, 52.5, 52.0, ... ]
8  :"Gear.Ratio"   double    47 [3.26, 2.95, 3.27, 3.25, 3.02, ... ], 38 nils
9  :Gear2          double    60 [3.21, 3.02, 3.25, 3.25, 2.99, ... ], 8 nils
10 :HP             uint16    51 [130, 160, 130, 108, 168, ... ], 3 nils
11 :"HP.revs"      uint16    25 [6000, 5900, 5500, 5300, 5800, ... ], 3 nils
12 :Height         double    27 [47.5, 50.0, 51.5, 50.5, 49.5, ... ]
13 :Length         uint8     49 [177, 191, 193, 176, 175, ... ]
14 :Luggage        int8      16 [16, 14, 17, 10, 12, ... ]
15 :Mileage        uint8     19 [nil, 20, nil, 27, nil, ... ], 58 nils
16 :Model2         string    21 ["", "", "", "", "", ... ]
17 :Price          uint16   104 [11950, 24760, 26900, 18900, 24650, ... ], 6 nils
18 :"Rear.Hd"      double    14 [1.5, 2.0, 3.0, 1.0, 1.0, ... ]
19 :"Rear.Seating" double    27 [26.5, 28.5, 31.0, 28.0, 25.5, ... ]
20 :RearShld       double    32 [52.0, 55.5, 55.0, 52.0, 51.5, ... ]
 ... 14 more Vectors ...
Rdatasets: Stat2Data: Hawks, Measurements on Three Hawk Species
RedAmber::DataFrame : 908 x 19 Vectors
Vectors : 13 numeric, 6 strings
#  key           type   level data_preview
1  :Month        uint8      4 {9=>293, 10=>462, 11=>152, 8=>1}
2  :Day          uint8     31 [19, 22, 23, 23, 27, ... ]
3  :Year         uint16    12 [1992, 1992, 1992, 1992, 1992, ... ]
4  :CaptureTime  string   308 ["13:30", "10:30", "12:45", "10:50", "11:15", ... ]
5  :ReleaseTime  string    60 ["", " ", " ", " ", " ", ... ]
6  :BandNumber   string   907 ["877-76317", "877-76318", "877-76319", "745-49508", "1253-98801", ... ]
7  :Species      string     3 {"RT"=>577, "CH"=>70, "SS"=>261}
8  :Age          string     2 {"I"=>684, "A"=>224}
9  :Sex          string     3 {""=>576, "F"=>174, "M"=>158}
10 :Wing         double   185 [385.0, 376.0, 381.0, 265.0, 205.0, ... ], 1 nil
11 :Weight       uint16   308 [920, 930, 990, 470, 170, ... ], 10 nils
12 :Culmen       double   180 [25.7, nil, 26.7, 18.7, 12.5, ... ], 7 nils
13 :Hallux       double   207 [30.1, nil, 31.3, 23.5, 14.3, ... ], 6 nils
14 :Tail         uint16   128 [219, 221, 235, 220, 157, ... ]
15 :StandardTail uint16   119 [nil, nil, nil, nil, nil, ... ], 337 nils
16 :Tarsus       double    68 [nil, nil, nil, nil, nil, ... ], 833 nils
17 :WingPitFat   uint8      5 {nil=>831, 0=>36, 2=>14, 1=>24, 3=>3}
18 :KeelFat      double     9 [nil, nil, nil, nil, nil, ... ], 341 nils
19 :Crop         double    12 [nil, nil, nil, nil, nil, ... ], 343 nils
Rdatasets: stevedata: anes_partytherms, Major Party (Democrat, Republican) Thermometer Index Data (1978-2012)
RedAmber::DataFrame : 33830 x 19 Vectors
Vectors : 18 numeric, 1 string
#  key                type   level data_preview
1  :year              uint16    16 [1978, 1978, 1978, 1978, 1978, ... ]
2  :uid               uint32 29209 [19780001, 19780002, 19780003, 19780004, 19780005, ... ]
3  :stateabb          string    52 ["FL", "IA", "OH", "PA", "PA", ... ]
4  :therm_dem         uint8     78 [80, 50, 40, 60, 85, ... ], 2813 nils
5  :therm_gop         uint8     76 [50, 50, 60, 60, 60, ... ], 2847 nils
6  :therm_bmp         uint8     92 [65, 50, 50, 60, 73, ... ], 2964 nils
7  :mpti              uint8     99 [65, 50, 40, 50, 63, ... ], 2964 nils
8  :age               uint8     84 [56, 76, 69, 38, 56, ... ]
9  :educat            uint8      8 [3, 1, 3, 3, 1, ... ], 342 nils
10 :urbanism          uint8      4 {2=>9003, 1=>5718, 3=>7349, nil=>11760}
11 :pid7              uint8      8 [1, 4, 7, 3, 3, ... ], 319 nils
12 :incomeperc        uint8      6 [1, 2, 3, 4, 3, ... ], 4372 nils
13 :race4             uint8      5 {1=>24640, 2=>4577, 4=>1056, 3=>3339, nil=>218}
14 :unemployed        uint8      3 {1=>1943, 0=>31676, nil=>211}
15 :polint            uint8      5 {2=>5787, 3=>9106, 4=>6494, 1=>3282, nil=>9161}
16 :distrust_govt     uint8      5 {3=>16971, 2=>8178, 4=>554, 1=>840, nil=>7287}
17 :govt_crooked      uint8      4 {2=>10025, 1=>2345, 3=>9388, nil=>12072}
18 :govt_waste        uint8      4 {3=>19883, 2=>8796, nil=>4458, 1=>693}
19 :govt_biginterests uint8      3 {1=>20135, 0=>8018, nil=>5677}
Rdatasets: tidyr: billboard, Song rankings for Billboard top 100 in the year 2000
RedAmber::DataFrame : 317 x 79 Vectors
Vectors : 65 numeric, 13 strings, 1 temporal
#  key             type   level data_preview
1  :artist         string   228 ["2 Pac", "2Ge+her", "3 Doors Down", "3 Doors Down", "504 Boyz", ... ]
2  :track          string   316 ["Baby Don't Cry (Keep...", "The Hardest Part Of ...", "Kryptonite", "Loser", "Wobble Wobble", ... ]
3  :"date.entered" date64    68 [#<DateTime: 2000-02-26T09:00:00+09:00 ((2451601j,0s,0n),+32400s,2299161j)>, #<DateTime: 2000-09-02T09:00:00+09:00 ((2451790j,0s,0n),+32400s,2299161j)>, ... ]
4  :wk1            uint8     63 [87, 91, 81, 76, 57, ... ]
5  :wk2            uint8     73 [82, 87, 70, 76, 34, ... ], 5 nils
6  :wk3            uint8     80 [72, 92, 68, 72, 25, ... ], 10 nils
7  :wk4            uint8     89 [77, nil, 67, 69, 17, ... ], 17 nils
8  :wk5            uint8     92 [87, nil, 66, 67, 17, ... ], 25 nils
9  :wk6            uint8     93 [94, nil, 57, 65, 31, ... ], 37 nils
10 :wk7            uint8     91 [99, nil, 54, 55, 36, ... ], 48 nils
11 :wk8            uint8     92 [nil, nil, 53, 59, 49, ... ], 57 nils
12 :wk9            uint8     93 [nil, nil, 51, 62, 53, ... ], 64 nils
13 :wk10           uint8     93 [nil, nil, 51, 61, 57, ... ], 73 nils
14 :wk11           uint8     93 [nil, nil, 51, 61, 64, ... ], 81 nils
15 :wk12           uint8     92 [nil, nil, 51, 59, 70, ... ], 95 nils
16 :wk13           uint8     87 [nil, nil, 47, 61, 75, ... ], 107 nils
17 :wk14           uint8     88 [nil, nil, 44, 66, 76, ... ], 113 nils
18 :wk15           uint8     87 [nil, nil, 38, 72, 78, ... ], 120 nils
19 :wk16           uint8     79 [nil, nil, 28, 76, 85, ... ], 135 nils
20 :wk17           uint8     80 [nil, nil, 22, 75, 92, ... ], 140 nils
 ... 59 more Vectors ...
Rdatasets: validate: nace_rev2, NACE classification code table
RedAmber::DataFrame : 996 x 10 Vectors
Vectors : 2 numeric, 8 strings
#  key                         type   level data_preview
1  :Order                      uint32   996 [398481, 398482, 398483, 398484, 398485, ... ]
2  :Level                      uint8      4 {1=>21, 2=>88, 3=>272, 4=>615}
3  :Code                       string   858 ["A", "1", "1.1", "1.11", "1.12", ... ]
4  :Parent                     string   382 ["", "A", "1", "1.1", "1.1", ... ]
5  :Description                string   847 ["AGRICULTURE, FORESTRY AND FISHING", "Crop and animal production, hunting and related service activities", "Growing of non-perennial crops", "Growing of cereals (except rice), leguminous crops and oil seeds", "Growing of rice", ... ]
6  :This_item_includes         string   779 ["This section includes the exploitation of vegetal and animal natural resources, comprising the activities of growing of crops, raising and breeding of animals, harvesting of timber and other plants, animals or animal products from a farm or their natural habitats.", "This division includes two basic activities, namely the production of crop products and production of animal products, covering also the forms of organic agriculture, the growing of genetically modified crops and the raising of genetically modified animals. This division includes growing of crops in open fields as well in greenhouses.\n \nGroup 01.5 (Mixed farming) breaks with the usual principles for identifying main activity. It accepts that many agricultural holdings have reasonably balanced crop and animal production, and that it would be arbitrary to classify them in one category or the other.", "This group includes the growing of non-perennial crops, i.e. plants that do not last for more than two growing seasons. Included is the growing of these plants for the purpose of seed production.", "This class includes all forms of growing of cereals, leguminous crops and oil seeds in open fields. The growing of these crops is often combined within agricultural units.\n\nThis class includes:\n- growing of cereals such as:\n  . wheat\n  . grain maize\n  . sorghum\n  . barley\n  . rye\n  . oats\n  . millets\n  . other cereals n.e.c.\n- growing of leguminous crops such as:\n  . beans\n  . broad beans\n  . chick peas\n  . cow peas\n  . lentils\n  . lupines\n  . peas\n  . pigeon peas\n  . other leguminous crops\n- growing of oil seeds such as:\n  . soya beans\n  . groundnuts\n  . castor bean\n  . linseed\n  . mustard seed\n  . niger seed\n  . rapeseed\n  . safflower seed\n  . sesame seed\n  . sunflower seed\n  . other oil seeds", "This class includes:\n- growing of rice (including organic farming and the growing of genetically modified rice)", ... ]
7  :This_item_also_includes    string   201 ["", "This division also includes service activities incidental to agriculture, as well as hunting, trapping and related activities.", "", "", "", ... ]
8  :Rulings                    string   134 ["", "", "", "", "", ... ]
9  :This_item_excludes         string   486 ["", "Agricultural activities exclude any subsequent processing of the agricultural products (classified under divisions 10 and 11 (Manufacture of food products and beverages) and division 12 (Manufacture of tobacco products)), beyond that needed to prepare them for the primary markets. The preparation of products for the primary markets is included here.\n\nThe division excludes field construction (e.g. agricultural land terracing, drainage, preparing rice paddies etc.) classified in section F (Construction) and buyers and cooperative associations engaged in the marketing of farm products classified in section G. Also excluded is the landscape care and maintenance, which is classified in class 81.30.", "", "This class excludes:\n- growing of rice, see 01.12\n- growing of sweet corn, see 01.13\n- growing of maize for fodder, see 01.19\n- growing of oleaginous fruits, see 01.26", "", ... ]
10 :"Reference_to_ISIC_Rev._4" string   725 ["A", "1", "9", "73", "74", ... ]
Rdatasets: validate: samplonomy, Economic data on Samplonia
RedAmber::DataFrame : 1199 x 5 Vectors
Vectors : 1 numeric, 4 strings
# key      type   level data_preview
1 :region  string    10 ["Agria", "Agria", "Agria", "Agria", "Agria", ... ]
2 :freq    string     2 {"A"=>239, "Q"=>960}
3 :period  string    30 ["2014", "2014", "2014", "2014", "2014Q1", ... ]
4 :measure string     4 {"gdp"=>299, "import"=>300, "export"=>300, "balance"=>300}
5 :value   double   477 [600000.0, 210000.0, 222000.0, 12000.0, 60000.0, ... ], 2 nils
Rdatasets: vcd: Baseball, Baseball Data
RedAmber::DataFrame : 322 x 25 Vectors
Vectors : 17 numeric, 8 strings
#  key       type   level data_preview
1  :name1    string   174 ["Al", "Alan", "Alan", "Alan", "Alex", ... ]
2  :name2    string   294 ["Newman", "Ashby", "Trammell", "Wiggins", "Trevino", ... ]
3  :atbat86  uint16   247 [185, 315, 574, 239, 202, ... ]
4  :hits86   uint8    144 [37, 81, 159, 60, 53, ... ]
5  :homer86  uint8     36 [1, 7, 21, 0, 4, ... ]
6  :runs86   uint8     96 [23, 24, 107, 30, 31, ... ]
7  :rbi86    uint8    103 [8, 38, 75, 11, 26, ... ]
8  :walks86  uint8     89 [21, 39, 59, 22, 27, ... ]
9  :years    uint8     22 [2, 14, 10, 6, 9, ... ]
10 :atbat    uint16   314 [214, 3449, 4631, 1941, 1876, ... ]
11 :hits     uint16   288 [42, 835, 1300, 510, 467, ... ]
12 :homeruns uint16   146 [1, 69, 90, 4, 15, ... ]
13 :runs     uint16   261 [30, 321, 702, 309, 192, ... ]
14 :rbi      uint16   262 [9, 414, 504, 103, 186, ... ]
15 :walks    uint16   248 [24, 375, 488, 207, 161, ... ]
16 :league86 string     2 {"N"=>147, "A"=>175}
17 :div86    string     2 {"E"=>157, "W"=>165}
18 :team86   string    24 ["Mon", "Hou", "Det", "Bal", "LA", ... ]
19 :posit86  string    25 ["2B", "C", "SS", "2B", "C", ... ]
20 :outs86   uint16   232 [76, 632, 238, 121, 304, ... ]
 ... 5 more Vectors ...
Rdatasets: vcd: Lifeboats, Lifeboats on the Titanic
RedAmber::DataFrame : 18 x 8 Vectors
Vectors : 5 numeric, 2 strings, 1 temporal
# key     type   level data_preview
1 :launch date64    12 [#<DateTime: 1912-04-15T09:45:00+09:00 ((2419508j,2700s,0n),+32400s,2299161j)>, #<DateTime: 1912-04-15T09:55:00+09:00 ((2419508j,3300s,0n),+32400s,2299161j)>, ... ]
2 :side   string     2 {"Port"=>9, "Starboard"=>9}
3 :boat   string    18 ["7", "5", "3", "1", "9", ... ]
4 :crew   uint8     10 [3, 5, 15, 7, 8, ... ]
5 :men    uint8      7 [4, 6, 10, 3, 6, ... ]
6 :women  uint8     15 [20, 30, 25, 2, 42, ... ]
7 :total  uint8     16 [27, 41, 50, 12, 56, ... ]
8 :cap    uint8      3 {65=>14, 40=>2, 47=>2}
Rdatasets: vcd: SpaceShuttle, Space Shuttle O-ring Failures
RedAmber::DataFrame : 24 x 6 Vectors
Vectors : 4 numeric, 2 strings
# key           type   level data_preview
1 :FlightNumber string    24 ["1", "2", "3", "4", "5", ... ]
2 :Temperature  uint8     17 [66, 70, 69, 80, 68, ... ]
3 :Pressure     uint8      3 {50=>8, 100=>2, 200=>14}
4 :Fail         string     3 {"no"=>16, "yes"=>7, nil=>1}
5 :nFailures    uint8      4 {0=>16, 1=>5, nil=>1, 2=>2}
6 :Damage       uint8      5 {0=>15, 4=>6, nil=>1, 2=>1, 11=>1}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment