Skip to content

Instantly share code, notes, and snippets.

@heronshoes
Created June 10, 2022 21:38
Show Gist options
  • Save heronshoes/e6e4a9f093000f2f7435345874987848 to your computer and use it in GitHub Desktop.
Save heronshoes/e6e4a9f093000f2f7435345874987848 to your computer and use it in GitHub Desktop.
Comment for red-data-tools / red-datasets #139

red-data-tools / red-datasets #139

Fix Rdatasets#each to change "NA" to nil.

  • This is the data preview after this fix applied.
  • 265 datasets are fixed.
# [package, dataset] pairs
[["AER", "BenderlyZwick"], ["AER", "GrowthDJ"], ["AER", "GSS7402"], ["AER", "MASchools"], ["AER", "STAR"], ["AER", "USMacroG"], ["AER", "USMacroSWM"], ["AER", "USSeatBelts"], ["asaur", "hepatoCellular"], ["boot", "neuro"], ["boot", "urine"], ["carData", "Chile"], ["carData", "Davis"], ["carData", "Freedman"], ["carData", "GSSvocab"], ["carData", "Hartnagel"], ["carData", "UN"], ["carData", "UN98"], ["causaldata", "abortion"], ["causaldata", "adult_services"], ["causaldata", "auto"], ["causaldata", "close_college"], ["causaldata", "nhefs"], ["causaldata", "nhefs_complete"], ["causaldata", "scorecard"], ["causaldata", "social_insure"], ["causaldata", "thornton_hiv"], ["cluster", "animals"], ["cluster", "plantTraits"], ["cluster", "votes.repub"], ["COUNT", "loomis"], ["COUNT", "ships"], ["DAAG", "bomregions"], ["DAAG", "bomregions2011"], ["DAAG", "bomregions2012"], ["DAAG", "cuckoohosts"], ["DAAG", "measles"], ["DAAG", "nassCDS"], ["DAAG", "nswdemo"], ["DAAG", "possum"], ["DAAG", "poxetc"], ["DAAG", "rainforest"], ["DAAG", "socsupport"], ["datasets", "airquality"], ["datasets", "presidents"], ["dplyr", "starwars"], ["dplyr", "storms"], ["dragracer", "rpdr_contep"], ["Ecdat", "Accident"], ["Ecdat", "bankingCrises"], ["Ecdat", "breaches"], ["Ecdat", "Garch"], ["Ecdat", "Hstarts"], ["Ecdat", "MCAS"], ["Ecdat", "nuclearWeaponStates"], ["Ecdat", "Orange"], ["Ecdat", "PSID"], ["Ecdat", "RetSchool"], ["Ecdat", "terrorism"], ["Ecdat", "USclassifiedDocuments"], ["Ecdat", "USGDPpresidents"], ["Ecdat", "UStaxWords"], ["fpp2", "melsyd"], ["gap", "meyer"], ["gap", "mr"], ["gap", "PD"], ["geepack", "dietox"], ["geepack", "muscatine"], ["ggplot2", "msleep"], ["ggplot2", "txhousing"], ["gt", "countrypops"], ["gt", "exibble"], ["gt", "sza"], ["HistData", "Cavendish"], ["HistData", "Fingerprints"], ["HistData", "OldMaps"], ["HistData", "Snow.dates"], ["HistData", "Virginis"], ["HSAUR", "BtheB"], ["ISLR", "Hitters"], ["KMsurv", "bcdeter"], ["lmec", "UTIdata"], ["MASS", "biopsy"], ["MASS", "Pima.tr2"], ["MASS", "survey"], ["mi", "CHAIN"], ["mi", "nlsyV"], ["mosaicData", "Gestation"], ["mosaicData", "HELPmiss"], ["mosaicData", "HELPrct"], ["mosaicData", "Marriage"], ["mosaicData", "SnowGR"], ["mosaicData", "Weather"], ["multgee", "arthritis"], ["multgee", "housing"], ["nycflights13", "flights"], ["nycflights13", "weather"], ["openintro", "acs12"], ["openintro", "ames"], ["openintro", "babies"], ["openintro", "births"], ["openintro", "births14"], ["openintro", "blizzard_salary"], ["openintro", "census"], ["openintro", "china"], ["openintro", "cia_factbook"], ["openintro", "cle_sac"], ["openintro", "email_test"], ["openintro", "exclusive_relationship"], ["openintro", "fastfood"], ["openintro", "get_it_dunn_run"], ["openintro", "gss2010"], ["openintro", "heart_transplant"], ["openintro", "hfi"], ["openintro", "husbands_wives"], ["openintro", "loan50"], ["openintro", "loans_full_schema"], ["openintro", "mammals"], ["openintro", "mlb_teams"], ["openintro", "mn_police_use_of_force"], ["openintro", "mtl"], ["openintro", "ncbirths"], ["openintro", "piracy"], ["openintro", "pm25_2011_durham"], ["openintro", "possum"], ["openintro", "president"], ["openintro", "prius_mpg"], ["openintro", "smoking"], ["openintro", "snowfall"], ["openintro", "sowc_demographics"], ["openintro", "sowc_maternal_newborn"], ["openintro", "sp500"], ["openintro", "speed_gender_height"], ["openintro", "world_pop"], ["palmerpenguins", "penguins"], ["plyr", "baseball"], ["pscl", "AustralianElections"], ["pscl", "ca2006"], ["pscl", "politicalInformation"], ["pscl", "state.info"], ["psych", "bfi"], ["psych", "sat.act"], ["ratdat", "complete"], ["ratdat", "complete_old"], ["ratdat", "surveys"], ["reshape2", "smiths"], ["robustbase", "airmay"], ["rpart", "car.test.frame"], ["rpart", "cu.summary"], ["rpart", "stagec"], ["sandwich", "Investment"], ["sandwich", "PublicSchools"], ["sem", "HS.data"], ["sem", "Tests"], ["Stat2Data", "AppleStock"], ["Stat2Data", "CreditRisk"], ["Stat2Data", "Day1Survey"], ["Stat2Data", "Faces"], ["Stat2Data", "Goldenrod"], ["Stat2Data", "GrinnellHouses"], ["Stat2Data", "Handwriting"], ["Stat2Data", "HawkTail2"], ["Stat2Data", "Hoops"], ["Stat2Data", "MathPlacement"], ["Stat2Data", "MedGPA"], ["Stat2Data", "NCbirths"], ["Stat2Data", "Overdrawn"], ["Stat2Data", "Pines"], ["Stat2Data", "Political"], ["Stat2Data", "Pollster08"], ["Stat2Data", "WeightLossIncentive"], ["Stat2Data", "YouthRisk"], ["Stat2Data", "YouthRisk2007"], ["Stat2Data", "YouthRisk2009"], ["stevedata", "anes_prochoice"], ["stevedata", "anes_vote84"], ["stevedata", "CFT15"], ["stevedata", "DST"], ["stevedata", "eq_passengercars"], ["stevedata", "ESS9GB"], ["stevedata", "ESSBE5"], ["stevedata", "gss_abortion"], ["stevedata", "gss_spending"], ["stevedata", "gss_wages"], ["stevedata", "mvprod"], ["stevedata", "nesarc_drinkspd"], ["stevedata", "recessions"], ["stevedata", "SBCD"], ["stevedata", "sealevels"], ["stevedata", "sugar_price"], ["stevedata", "thatcher_approval"], ["stevedata", "therms"], ["stevedata", "turnips"], ["stevedata", "TV16"], ["stevedata", "usa_chn_gdp_forecasts"], ["stevedata", "usa_migration"], ["stevedata", "wvs_ccodes"], ["stevedata", "wvs_immig"], ["stevedata", "wvs_justifbribe"], ["stevedata", "wvs_usa_abortion"], ["stevedata", "wvs_usa_educat"], ["stevedata", "yugo_sales"], ["survival", "cancer"], ["survival", "pbc"], ["survival", "rhDNase"], ["survival", "transplant"], ["survival", "udca"], ["tidyr", "smiths"], ["tidyr", "us_rent_income"], ["tidyr", "who"], ["validate", "retailers"], ["validate", "SBS2000"], ["vcd", "Bundesliga"], ["wooldridge", "athlet1"], ["wooldridge", "athlet2"], ["wooldridge", "beveridge"], ["wooldridge", "big9salary"], ["wooldridge", "bwght"], ["wooldridge", "bwght2"], ["wooldridge", "card"], ["wooldridge", "catholic"], ["wooldridge", "cement"], ["wooldridge", "consump"], ["wooldridge", "countymurders"], ["wooldridge", "cps91"], ["wooldridge", "crime2"], ["wooldridge", "crime3"], ["wooldridge", "crime4"], ["wooldridge", "discrim"], ["wooldridge", "earns"], ["wooldridge", "econmath"], ["wooldridge", "ezanders"], ["wooldridge", "ezunem"], ["wooldridge", "fertil2"], ["wooldridge", "fertil3"], ["wooldridge", "fish"], ["wooldridge", "gpa3"], ["wooldridge", "happiness"], ["wooldridge", "hseinv"], ["wooldridge", "injury"], ["wooldridge", "intdef"], ["wooldridge", "intqrt"], ["wooldridge", "inven"], ["wooldridge", "jtrain"], ["wooldridge", "lawsch85"], ["wooldridge", "loanapp"], ["wooldridge", "lowbrth"], ["wooldridge", "mathpnl"], ["wooldridge", "minwage"], ["wooldridge", "mlb1"], ["wooldridge", "murder"], ["wooldridge", "nbasal"], ["wooldridge", "nyse"], ["wooldridge", "okun"], ["wooldridge", "pension"], ["wooldridge", "phillips"], ["wooldridge", "prminwge"], ["wooldridge", "rental"], ["wooldridge", "school93_98"], ["wooldridge", "traffic2"], ["wooldridge", "volat"], ["wooldridge", "vote2"], ["wooldridge", "voucher"], ["wooldridge", "wage2"], ["wooldridge", "wageprc"]]
Rdatasets: AER: BenderlyZwick, Benderly and Zwick Data: Inflation, Growth and Stock Returns
RedAmber::DataFrame : 31 x 5 Vectors
Vectors : 5 numeric
# key         type   level data_preview
1 :returns    double    26 [nil, nil, 53.0, 31.2, 3.7, ... ], 3 nils
2 :growth     double    23 [nil, nil, 6.7, 2.1, 1.8, ... ], 3 nils
3 :inflation  double    27 [nil, nil, -0.4, 0.4, 2.9, ... ], 3 nils
4 :growth2    double    25 [3.9, 4.0, -1.3, 5.6, 2.1, ... ]
5 :inflation2 double    25 [2.2, 2.1, 0.6, 1.3, 1.9, ... ]
Rdatasets: AER: GrowthDJ, Determinants of Economic Growth
RedAmber::DataFrame : 121 x 10 Vectors
Vectors : 7 numeric, 3 strings
#  key         type   level data_preview
1  :oil        string     2 {"no"=>98, "yes"=>23}
2  :inter      string     2 {"yes"=>75, "no"=>46}
3  :oecd       string     2 {"no"=>99, "yes"=>22}
4  :gdp60      uint32   115 [2485, 1588, 1116, 959, 529, ... ], 5 nils
5  :gdp85      uint16   106 [4371, 1171, 1071, 3671, 857, ... ], 13 nils
6  :gdpgrowth  double    63 [4.8, 0.8, 2.2, 8.6, 2.9, ... ], 4 nils
7  :popgrowth  double    37 [2.6, 2.1, 2.4, 3.2, 0.9, ... ], 14 nils
8  :invest     double    98 [24.1, 5.8, 10.8, 28.3, 12.7, ... ]
9  :school     double    75 [4.5, 1.8, 1.8, 2.9, 0.4, ... ], 3 nils
10 :literacy60 uint8     59 [10, 5, 5, nil, 2, ... ], 18 nils
Rdatasets: AER: GSS7402, US General Social Survey 1974-2002
RedAmber::DataFrame : 9120 x 10 Vectors
Vectors : 6 numeric, 4 strings
#  key            type   level data_preview
1  :kids          uint8      9 [0, 1, 1, 2, 2, ... ]
2  :age           uint8     72 [25, 30, 55, 57, 71, ... ]
3  :education     uint8     21 [14, 13, 2, 16, 12, ... ]
4  :year          uint16     8 [2002, 2002, 2002, 2002, 2002, ... ]
5  :siblings      uint8     27 [1, 4, 1, 1, 6, ... ]
6  :agefirstbirth uint8     34 [nil, 19, 27, 22, 29, ... ], 5808 nils
7  :ethnicity     string     2 {"cauc"=>7335, "other"=>1785}
8  :city16        string     2 {"no"=>5246, "yes"=>3874}
9  :lowincome16   string     2 {"no"=>7182, "yes"=>1938}
10 :immigrant     string     2 {"no"=>8122, "yes"=>998}
Rdatasets: AER: MASchools, Massachusetts Test Score Data
RedAmber::DataFrame : 220 x 16 Vectors
Vectors : 15 numeric, 1 string
#  key           type   level data_preview
1  :district     uint16   220 [1, 2, 3, 5, 7, ... ]
2  :municipality string   220 ["Abington", "Acton", "Acushnet", "Agawam", "Amesbury", ... ]
3  :expreg       uint16   207 [4201, 4129, 3627, 4015, 4273, ... ]
4  :expspecial   double   220 [7375.68994140625, 8573.990234375, 8081.72021484375, 8181.3701171875, 7037.22021484375, ... ]
5  :expbil       uint32    47 [0, 0, 0, 0, 0, ... ]
6  :expocc       uint16    40 [0, 0, 0, 0, 0, ... ]
7  :exptot       uint16   209 [4646, 4930, 4281, 4826, 4824, ... ]
8  :scratio      double    94 [16.6000003814697, 5.69999980926514, 7.5, 8.60000038146973, 6.09999990463257, ... ], 9 nils
9  :special      double   105 [14.6000003814697, 17.3999996185303, 12.1000003814697, 21.1000003814697, 16.7999992370605, ... ]
10 :lunch        double   154 [11.8000001907349, 2.5, 14.1000003814697, 12.1000003814697, 17.3999996185303, ... ]
11 :stratio      double    83 [19.0, 22.6000003814697, 19.2999992370605, 17.8999996185303, 17.5, ... ]
12 :income       double   216 [16.379, 25.792, 14.04, 16.111, 15.423, ... ]
13 :score4       uint16    63 [714, 731, 704, 704, 701, ... ]
14 :score8       uint16    73 [691, nil, 693, 691, 699, ... ], 40 nils
15 :salary       double   191 [34.3600006103516, 38.0629997253418, 32.4910011291504, 33.1059989929199, 34.4365005493164, ... ], 25 nils
16 :english      double    92 [0.0, 1.24610590934753, 0.0, 0.322580635547638, 0.0, ... ]
Rdatasets: AER: STAR, Project STAR: Student-Teacher Achievement Ratio
RedAmber::DataFrame : 11598 x 47 Vectors
Vectors : 20 numeric, 27 strings
#  key          type   level data_preview
1  :gender      string     3 {"female"=>5456, "male"=>6122, nil=>20}
2  :ethnicity   string     7 ["afam", "cauc", "afam", "cauc", "afam", ... ], 145 nils
3  :birth       string    22 ["1979 Q3", "1980 Q1", "1979 Q4", "1979 Q4", "1980 Q1", ... ], 70 nils
4  :stark       string     4 {nil=>5273, "small"=>1900, "regular+aide"=>2231, "regular"=>2194}
5  :star1       string     4 {nil=>4769, "small"=>1925, "regular+aide"=>2320, "regular"=>2584}
6  :star2       string     4 {nil=>4758, "small"=>2016, "regular+aide"=>2495, "regular"=>2329}
7  :star3       string     4 {"regular"=>2085, "small"=>2174, "regular+aide"=>2543, nil=>4796}
8  :readk       uint16    94 [nil, 447, 450, nil, 439, ... ], 5809 nils
9  :read1       uint16    87 [nil, 507, 579, nil, nil, ... ], 5202 nils
10 :read2       uint16    94 [nil, 568, 588, nil, nil, ... ], 5521 nils
11 :read3       uint16    91 [580, 587, 644, 686, nil, ... ], 5598 nils
12 :mathk       uint16    39 [nil, 473, 536, nil, 463, ... ], 5727 nils
13 :math1       uint16    68 [nil, 538, 592, nil, nil, ... ], 4998 nils
14 :math2       uint16    88 [nil, 579, 579, nil, nil, ... ], 5533 nils
15 :math3       uint16    95 [564, 593, 639, 667, nil, ... ], 5521 nils
16 :lunchk      string     3 {nil=>5296, "non-free"=>3250, "free"=>3052}
17 :lunch1      string     3 {nil=>4947, "free"=>3430, "non-free"=>3221}
18 :lunch2      string     3 {nil=>5102, "non-free"=>3160, "free"=>3336}
19 :lunch3      string     3 {"free"=>3293, "non-free"=>3227, nil=>5078}
20 :schoolk     string     5 {nil=>5273, "rural"=>2917, "suburban"=>1412, "inner-city"=>1428, "urban"=>568}
 ... 27 more Vectors ...
Rdatasets: AER: USMacroG, US Macroeconomic Data (1950-2000, Greene)
RedAmber::DataFrame : 204 x 12 Vectors
Vectors : 12 numeric
#  key          type   level data_preview
1  :gdp         double   203 [1610.5, 1658.8, 1723.0, 1753.9, 1773.5, ... ]
2  :consumption double   204 [1058.9, 1075.9, 1131.0, 1097.6, 1122.8, ... ]
3  :invest      double   202 [198.1, 220.4, 239.7, 271.8, 242.9, ... ]
4  :government  double   202 [361.0, 366.4, 359.6, 382.5, 421.9, ... ]
5  :dpi         double   203 [1186.1, 1178.1, 1196.5, 1210.0, 1207.9, ... ]
6  :cpi         double   190 [70.6, 71.4, 73.2, 74.9, 77.3, ... ]
7  :m1          double   201 [110.2, 111.75, 112.95, 113.93, 115.08, ... ]
8  :tbill       double   186 [1.12, 1.17, 1.23, 1.35, 1.4, ... ]
9  :unemp       double    61 [6.4, 5.6, 4.6, 4.2, 3.5, ... ]
10 :population  double   204 [149.461, 150.26, 151.064, 151.871, 152.393, ... ]
11 :inflation   double   194 [nil, 4.5071, 9.959, 9.1834, 12.616, ... ], 1 nil
12 :interest    double   204 [nil, -3.3404, -8.729, -7.8301, -11.216, ... ], 1 nil
Rdatasets: AER: USMacroSWM, Monthly US Macroeconomic Data (1947-2004, Stock & Watson)
RedAmber::DataFrame : 696 x 4 Vectors
Vectors : 4 numeric
# key          type   level data_preview
1 :production  double   616 [17.04, 17.14, 17.24, 17.1, 17.17, ... ]
2 :oil         double    23 [nil, nil, nil, nil, nil, ... ], 12 nils
3 :cpi         double   609 [21.48, 21.62, 22.0, 22.0, 21.95, ... ]
4 :expenditure double   533 [nil, nil, nil, nil, nil, ... ], 144 nils
Rdatasets: AER: USSeatBelts, Effects of Mandatory Seat Belt Laws in the US
RedAmber::DataFrame : 765 x 12 Vectors
Vectors : 6 numeric, 6 strings
#  key         type   level data_preview
1  :state      string    51 ["AK", "AK", "AK", "AK", "AK", ... ]
2  :year       uint16    15 [1983, 1984, 1985, 1986, 1987, ... ]
3  :miles      uint32   758 [3358, 3589, 3840, 4008, 3900, ... ]
4  :fatalities double   765 [0.0446694456040859, 0.0373363047838211, 0.0330729149281979, 0.0251996014267206, 0.0194871798157692, ... ]
5  :seatbelt   double   246 [nil, nil, nil, nil, nil, ... ], 209 nils
6  :speed65    string     2 {"no"=>271, "yes"=>494}
7  :speed70    string     2 {"no"=>711, "yes"=>54}
8  :drinkage   string     2 {"yes"=>677, "no"=>88}
9  :alcohol    string     2 {"no"=>676, "yes"=>89}
10 :income     uint16   750 [17973, 18093, 18925, 18466, 18021, ... ]
11 :age        double   764 [28.2349662780762, 28.343542098999, 28.3728160858154, 28.3966522216797, 28.4532508850098, ... ]
12 :enforce    string     3 {"no"=>293, "secondary"=>379, "primary"=>93}
Rdatasets: asaur: hepatoCellular, hepatoCellular
RedAmber::DataFrame : 227 x 48 Vectors
Vectors : 48 numeric
#  key                   type   level data_preview
1  :Number               uint8    227 [1, 2, 3, 4, 5, ... ]
2  :Age                  uint8     52 [57, 58, 65, 54, 71, ... ]
3  :Gender               uint8      2 {0=>30, 1=>197}
4  :HBsAg                uint8      2 {1=>209, 0=>18}
5  :Cirrhosis            uint8      2 {1=>142, 0=>85}
6  :ALT                  uint8      2 {1=>138, 2=>89}
7  :AST                  uint8      2 {2=>96, 1=>131}
8  :AFP                  uint8      2 {2=>149, 1=>78}
9  :Tumorsize            uint8      2 {2=>131, 1=>96}
10 :Tumordifferentiation uint8      2 {1=>129, 2=>98}
11 :Vascularinvasion     uint8      2 {0=>186, 1=>41}
12 :Tumormultiplicity    uint8      2 {1=>170, 2=>57}
13 :Capsulation          uint8      2 {0=>52, 1=>175}
14 :TNM                  uint8      2 {2=>105, 1=>122}
15 :BCLC                 uint8      2 {1=>136, 2=>91}
16 :OS                   uint8     75 [83, 81, 79, 76, 7, ... ]
17 :Death                uint8      2 {0=>130, 1=>97}
18 :RFS                  uint8     68 [13, 81, 79, 76, 3, ... ]
19 :Recurrence           uint8      2 {1=>143, 0=>84}
20 :CXCL17T              double   226 [113.9472382, 54.07154185, 22.18883123, 8.442809305, 8.271131328, ... ]
 ... 28 more Vectors ...
Rdatasets: boot: neuro, Neurophysiological Point Process Data
RedAmber::DataFrame : 469 x 6 Vectors
Vectors : 6 numeric
# key type   level data_preview
1 :V1 double    40 [nil, nil, nil, nil, nil, ... ], 429 nils
2 :V2 double   359 [-203.7, -203.0, -249.0, -231.5, nil, ... ], 51 nils
3 :V3 double   405 [-84.1, -97.8, -92.1, -97.5, -130.1, ... ]
4 :V4 double   291 [18.5, 25.8, 27.8, 27.0, 25.8, ... ], 1 nil
5 :V5 double   378 [nil, 134.7, 177.1, 150.3, 160.0, ... ], 24 nils
6 :V6 double    83 [nil, nil, nil, nil, nil, ... ], 379 nils
Rdatasets: boot: urine, Urine Analysis Data
RedAmber::DataFrame : 79 x 7 Vectors
Vectors : 7 numeric
# key      type   level data_preview
1 :r       uint8      2 {0=>45, 1=>34}
2 :gravity double    29 [1.021, 1.017, 1.008, 1.011, 1.005, ... ]
3 :ph      double    70 [4.91, 5.74, 7.2, 5.51, 6.52, ... ]
4 :osmo    uint16    77 [725, 577, 321, 408, 187, ... ], 1 nil
5 :cond    double    64 [nil, 20.0, 14.9, 12.6, 7.5, ... ], 1 nil
6 :urea    uint16    73 [443, 296, 101, 224, 91, ... ]
7 :calc    double    75 [2.45, 4.49, 2.36, 2.15, 1.16, ... ]
Rdatasets: carData: Chile, Voting Intentions in the 1988 Chilean Plebiscite
RedAmber::DataFrame : 2700 x 8 Vectors
Vectors : 4 numeric, 4 strings
# key         type   level data_preview
1 :region     string     5 {"N"=>322, "C"=>600, "S"=>718, "SA"=>960, "M"=>100}
2 :population uint32    10 [175000, 175000, 175000, 175000, 175000, ... ]
3 :sex        string     2 {"M"=>1321, "F"=>1379}
4 :age        uint8     54 [65, 29, 38, 49, 23, ... ], 1 nil
5 :education  string     4 {"P"=>1107, "PS"=>462, "S"=>1120, nil=>11}
6 :income     uint32     8 [35000, 7500, 15000, 35000, 35000, ... ], 98 nils
7 :statusquo  double  2093 [1.0082, -1.29617, 1.23072, -1.03163, -1.10496, ... ], 17 nils
8 :vote       string     5 {"Y"=>868, "N"=>889, "U"=>588, nil=>168, "A"=>187}
Rdatasets: carData: Davis, Self-Reports of Height and Weight
RedAmber::DataFrame : 200 x 5 Vectors
Vectors : 4 numeric, 1 string
# key     type   level data_preview
1 :sex    string     2 {"M"=>88, "F"=>112}
2 :weight uint8     54 [77, 58, 53, 68, 59, ... ]
3 :height uint8     43 [182, 161, 161, 177, 157, ... ]
4 :repwt  uint8     54 [77, 51, 54, 70, 59, ... ], 17 nils
5 :repht  uint8     33 [180, 159, 158, 175, 155, ... ], 17 nils
Rdatasets: carData: Freedman, Crowding and Crime in U. S. Metropolitan Areas
RedAmber::DataFrame : 110 x 4 Vectors
Vectors : 4 numeric
# key         type   level data_preview
1 :population uint16    99 [675, 713, nil, 534, 1261, ... ], 10 nils
2 :nonwhite   double    84 [7.3, 2.6, 3.3, 0.8, 1.4, ... ]
3 :density    uint16    99 [746, 322, nil, 491, 1612, ... ], 10 nils
4 :crime      uint16   109 [2602, 1388, 5018, 1182, 3341, ... ]
Rdatasets: carData: GSSvocab, Data from the General Social Survey (GSS) from the National Opinion Research Center of the University of Chicago.
RedAmber::DataFrame : 28867 x 8 Vectors
Vectors : 4 numeric, 4 strings
# key         type   level data_preview
1 :year       uint16    20 [1978, 1978, 1978, 1978, 1978, ... ]
2 :gender     string     2 {"female"=>16385, "male"=>12482}
3 :nativeBorn string     3 {"yes"=>26224, "no"=>2556, nil=>87}
4 :ageGroup   string     6 ["50-59", "60+", "30-39", "50-59", "40-49", ... ], 94 nils
5 :educGroup  string     6 ["12 yrs", "<12 yrs", "<12 yrs", "12 yrs", "12 yrs", ... ], 81 nils
6 :vocab      uint8     12 [10, 6, 4, 9, 6, ... ], 1348 nils
7 :age        uint8     73 [52, 74, 35, 50, 41, ... ], 94 nils
8 :educ       uint8     22 [12, 9, 10, 12, 12, ... ], 81 nils
Rdatasets: carData: Hartnagel, Canadian Crime-Rates Time Series
RedAmber::DataFrame : 38 x 8 Vectors
Vectors : 8 numeric
# key       type   level data_preview
1 :year     uint16    38 [1931, 1932, 1933, 1934, 1935, ... ]
2 :tfr      uint16    38 [3200, 3084, 2864, 2803, 2755, ... ]
3 :partic   uint16    30 [234, 234, 235, 237, 238, ... ]
4 :degrees  double    36 [12.4, 12.9, 13.9, 13.6, 13.2, ... ]
5 :fconvict double    36 [77.1, 92.9, 98.3, 88.1, 79.4, ... ]
6 :ftheft   double    35 [nil, nil, nil, nil, 20.4, ... ], 4 nils
7 :mconvict double    37 [778.7, 745.7, 768.3, 733.6, 765.7, ... ]
8 :mtheft   double    33 [nil, nil, nil, nil, 247.1, ... ], 4 nils
Rdatasets: carData: UN, National Statistics from the United Nations, Mostly From 2009-2011
RedAmber::DataFrame : 213 x 7 Vectors
Vectors : 5 numeric, 2 strings
# key              type   level data_preview
1 :region          string     9 ["Asia", "Europe", "Africa", nil, "Africa", ... ], 14 nils
2 :group           string     4 {"other"=>115, "africa"=>53, nil=>14, "oecd"=>31}
3 :fertility       double   194 [5.968, 1.525, 2.142, nil, 5.135, ... ], 14 nils
4 :ppgdp           double   200 [499.0, 3677.2, 4473.0, nil, 4321.9, ... ], 14 nils
5 :lifeExpF        double   193 [49.49, 80.4, 75.0, nil, 53.17, ... ], 14 nils
6 :pctUrban        uint8     81 [23, 53, 67, nil, 59, ... ], 14 nils
7 :infantMortality double   206 [124.535, 16.561, 21.458, 11.2938865700958, 96.191, ... ], 6 nils
Rdatasets: carData: UN98, United Nations Social Indicators Data 1998]
RedAmber::DataFrame : 207 x 13 Vectors
Vectors : 12 numeric, 1 string
#  key                     type   level data_preview
1  :region                 string     5 {"Asia"=>50, "Europe"=>44, "Africa"=>55, "America"=>41, "Oceania"=>17}
2  :tfr                    double   151 [6.9, 2.6, 3.81, nil, nil, ... ], 10 nils
3  :contraception          uint8     72 [nil, nil, 52, nil, nil, ... ], 63 nils
4  :educationMale          double    55 [nil, nil, 11.1, nil, nil, ... ], 131 nils
5  :educationFemale        double    58 [nil, nil, 9.9, nil, nil, ... ], 131 nils
6  :lifeMale               double   143 [45.0, 68.0, 67.5, 68.0, nil, ... ], 11 nils
7  :lifeFemale             double   144 [46.0, 74.0, 70.3, 73.0, nil, ... ], 11 nils
8  :infantMortality        uint8     96 [154, 32, 44, 11, nil, ... ], 6 nils
9  :GDPperCapita           uint16   189 [2848, 863, 1531, nil, nil, ... ], 10 nils
10 :economicActivityMale   double   121 [87.5, nil, 76.4, 58.8, nil, ... ], 42 nils
11 :economicActivityFemale double   140 [7.2, nil, 7.8, 42.4, nil, ... ], 42 nils
12 :illiteracyMale         double   134 [52.8, nil, 26.1, 0.264, nil, ... ], 47 nils
13 :illiteracyFemale       double   144 [85.0, nil, 51.0, 0.36, nil, ... ], 47 nils
Rdatasets: causaldata: abortion, Data on abortion legalization and sexually transmitted infections
RedAmber::DataFrame : 19584 x 22 Vectors
Vectors : 22 numeric
#  key      type   level data_preview
1  :fip     uint8     51 [1, 1, 1, 1, 1, ... ]
2  :age     uint8      6 [30, 15, 20, 20, 20, ... ]
3  :race    uint8      2 {2=>9792, 1=>9792}
4  :year    uint16    16 [1985, 1985, 1985, 1985, 1985, ... ]
5  :sex     uint8      2 {1=>9792, 2=>9792}
6  :totpop  uint32  9269 [78805, 224003, 94113, 252076, 94113, ... ]
7  :ir      double  9287 [371.475799560547, 51.3892517089844, 390.875671386719, 100.836799621582, 390.875671386719, ... ]
8  :crack   double   816 [0.21743780374527, 0.21743780374527, 0.21743780374527, 0.21743780374527, 0.21743780374527, ... ]
9  :alcohol double   211 [1.89999997615814, 1.89999997615814, 1.89999997615814, 1.89999997615814, 1.89999997615814, ... ]
10 :income  uint16   794 [11566, 11566, 11566, 11566, 11566, ... ]
11 :ur      double   517 [8.61666679382324, 8.61666679382324, 8.61666679382324, 8.61666679382324, 8.61666679382324, ... ]
12 :poverty double   177 [20.6000003814697, 20.6000003814697, 20.6000003814697, 20.6000003814697, 20.6000003814697, ... ]
13 :repeal  uint8      2 {0=>17664, 1=>1920}
14 :acc     double   788 [0.679504454135895, 0.679504454135895, 0.679504454135895, 0.679504454135895, 0.679504454135895, ... ]
15 :wht     uint8      2 {0=>9792, 1=>9792}
16 :male    uint8      2 {1=>9792, 0=>9792}
17 :lnr     double  9331 [7.8808798789978, 6.3621654510498, 8.91779327392578, 5.90699529647827, 9.07200908660889, ... ], 1663 nils
18 :t       uint8     16 [1, 1, 1, 1, 1, ... ]
19 :younger uint8      2 {0=>16320, 1=>3264}
20 :fa      uint8    103 [nil, 1, nil, nil, nil, ... ], 13056 nils
 ... 2 more Vectors ...
Rdatasets: causaldata: adult_services, Data from a survey of internet-mediated sex workers
RedAmber::DataFrame : 1787 x 31 Vectors
Vectors : 31 numeric
#  key              type   level data_preview
1  :id              uint16   500 [243, 397, 598, 28, 28, ... ], 60 nils
2  :session         uint8      5 {2=>459, 4=>373, 1=>484, 3=>411, nil=>60}
3  :age             uint8     44 [27, 28, 50, 41, 41, ... ], 86 nils
4  :age_cl          double    73 [30.0, 56.0, 52.0, 72.0, 46.0, ... ], 142 nils
5  :appearance_cl   uint8     11 [5, 5, 6, 5, 8, ... ], 111 nils
6  :bmi             double   249 [nil, 28.9719314575195, 21.453857421875, 24.0283203125, 24.0283203125, ... ], 103 nils
7  :schooling       uint8      5 {11=>72, 16=>776, 12=>164, 14=>712, nil=>63}
8  :asq_cl          double    73 [900.0, 3136.0, 2704.0, 5184.0, 2116.0, ... ], 142 nils
9  :provider_second uint8      3 {1=>1630, 2=>87, nil=>70}
10 :asian_cl        uint8      3 {0=>1577, nil=>126, 1=>84}
11 :black_cl        uint8      3 {1=>85, 0=>1576, nil=>126}
12 :hispanic_cl     uint8      3 {0=>1611, nil=>126, 1=>50}
13 :othrace_cl      uint8      3 {0=>1617, 1=>44, nil=>126}
14 :reg             uint8      3 {0=>754, 1=>968, nil=>65}
15 :hot             uint8      3 {0=>907, 1=>807, nil=>73}
16 :massage_cl      uint8      3 {0=>1076, 1=>643, nil=>68}
17 :lnw             double   176 [nil, 5.52146100997925, 5.29831743240356, 5.92692613601685, 5.11599588394165, ... ], 122 nils
18 :llength         double    70 [2.70805025100708, 4.78749179840088, 5.19295692443848, 3.68887948989868, 4.49980974197388, ... ], 70 nils
19 :unsafe          uint8      2 {0=>885, 1=>902}
20 :asian           uint8      3 {0=>1692, 1=>35, nil=>60}
 ... 11 more Vectors ...
Rdatasets: causaldata: auto, Automobile data from Stata
RedAmber::DataFrame : 74 x 12 Vectors
Vectors : 11 numeric, 1 string
#  key           type   level data_preview
1  :make         string    74 ["AMC Concord", "AMC Pacer", "AMC Spirit", "Buick Century", "Buick Electra", ... ]
2  :price        uint16    74 [4099, 4749, 3799, 4816, 7827, ... ]
3  :mpg          uint8     21 [22, 17, 22, 20, 15, ... ]
4  :rep78        uint8      6 [3, 3, nil, 3, 4, ... ], 5 nils
5  :headroom     double     8 [2.5, 3.0, 3.0, 4.5, 4.0, ... ]
6  :trunk        uint8     18 [11, 11, 12, 16, 20, ... ]
7  :weight       uint16    64 [2930, 3350, 2640, 3250, 4080, ... ]
8  :length       uint8     47 [186, 173, 168, 196, 222, ... ]
9  :turn         uint8     18 [40, 40, 35, 40, 43, ... ]
10 :displacement uint16    31 [121, 258, 121, 196, 350, ... ]
11 :gear_ratio   double    36 [3.57999992370605, 2.52999997138977, 3.07999992370605, 2.9300000667572, 2.41000008583069, ... ]
12 :foreign      uint8      2 {0=>52, 1=>22}
Rdatasets: causaldata: close_college, Data from Card (1995) to estimate the effect of college education on earnings
RedAmber::DataFrame : 3010 x 8 Vectors
Vectors : 8 numeric
# key      type   level data_preview
1 :nearc4  uint8      2 {0=>957, 1=>2053}
2 :educ    uint8     18 [7, 12, 12, 11, 12, ... ]
3 :black   uint8      2 {1=>703, 0=>2307}
4 :smsa    uint8      2 {1=>2146, 0=>864}
5 :south   uint8      2 {0=>1795, 1=>1215}
6 :married uint8      7 [1, 1, 1, 1, 1, ... ], 7 nils
7 :exper   uint8     24 [16, 9, 16, 10, 16, ... ]
8 :lwage   double   755 [6.30627489089966, 6.17586708068848, 6.58063888549805, 5.52146100997925, 6.59167385101318, ... ]
Rdatasets: causaldata: nhefs, National Health and Nutrition Examination Survey Data I Epidemiologic Follow-up Study
RedAmber::DataFrame : 1629 x 67 Vectors
Vectors : 67 numeric
#  key                type   level data_preview
1  :seqn              uint16  1629 [233, 235, 244, 245, 252, ... ]
2  :qsmk              uint8      2 {0=>1201, 1=>428}
3  :death             uint8      2 {0=>1311, 1=>318}
4  :yrdth             uint8     11 [nil, nil, nil, 85, nil, ... ], 1311 nils
5  :modth             uint8     13 [nil, nil, nil, 2, nil, ... ], 1307 nils
6  :dadth             uint8     32 [nil, nil, nil, 14, nil, ... ], 1307 nils
7  :sbp               uint8    108 [175, 123, 115, 148, 118, ... ], 77 nils
8  :dbp               uint8     70 [96, 80, 75, 78, 77, ... ], 81 nils
9  :sex               uint8      2 {0=>799, 1=>830}
10 :age               uint8     49 [42, 36, 56, 68, 40, ... ]
11 :race              uint8      2 {1=>215, 0=>1414}
12 :income            uint8     13 [19, 18, 15, 15, 18, ... ], 62 nils
13 :marital           uint8      6 [2, 2, 3, 3, 2, ... ]
14 :school            uint8     17 [7, 9, 11, 5, 11, ... ]
15 :education         uint8      5 {1=>311, 2=>351, 3=>659, 5=>182, 4=>126}
16 :ht                double   384 [174.1875, 159.375, 168.5, 170.1875, 181.875, ... ]
17 :wt71              double   527 [79.04, 58.63, 56.81, 59.42, 87.09, ... ]
18 :wt82              double   176 [68.94604024, 61.23496995, 66.22448602, 64.41011654, 92.07925111, ... ], 63 nils
19 :wt82_71           double  1511 [-10.09395976, 2.60496995, 9.41448602, 4.99011654, 4.98925111, ... ], 63 nils
20 :birthplace        uint8     50 [47, 42, 51, 37, 42, ... ], 92 nils
 ... 47 more Vectors ...
Rdatasets: causaldata: nhefs_complete, Complete-Data National Health and Nutrition Examination Survey Data I Epidemiologic Follow-up Study
RedAmber::DataFrame : 1566 x 67 Vectors
Vectors : 67 numeric
#  key                type   level data_preview
1  :seqn              uint16  1566 [233, 235, 244, 245, 252, ... ]
2  :qsmk              uint8      2 {0=>1163, 1=>403}
3  :death             uint8      2 {0=>1275, 1=>291}
4  :yrdth             uint8     11 [nil, nil, nil, 85, nil, ... ], 1275 nils
5  :modth             uint8     13 [nil, nil, nil, 2, nil, ... ], 1271 nils
6  :dadth             uint8     32 [nil, nil, nil, 14, nil, ... ], 1271 nils
7  :sbp               uint8    108 [175, 123, 115, 148, 118, ... ], 29 nils
8  :dbp               uint8     70 [96, 80, 75, 78, 77, ... ], 33 nils
9  :sex               uint8      2 {0=>762, 1=>804}
10 :age               uint8     49 [42, 36, 56, 68, 40, ... ]
11 :race              uint8      2 {1=>206, 0=>1360}
12 :income            uint8     13 [19, 18, 15, 15, 18, ... ], 59 nils
13 :marital           uint8      6 [2, 2, 3, 3, 2, ... ]
14 :school            uint8     17 [7, 9, 11, 5, 11, ... ]
15 :education         uint8      5 {1=>291, 2=>340, 3=>637, 5=>177, 4=>121}
16 :ht                double   378 [174.1875, 159.375, 168.5, 170.1875, 181.875, ... ]
17 :wt71              double   514 [79.04, 58.63, 56.81, 59.42, 87.09, ... ]
18 :wt82              double   175 [68.94604024, 61.23496995, 66.22448602, 64.41011654, 92.07925111, ... ]
19 :wt82_71           double  1510 [-10.09395976, 2.60496995, 9.41448602, 4.99011654, 4.98925111, ... ]
20 :birthplace        uint8     50 [47, 42, 51, 37, 42, ... ], 90 nils
 ... 47 more Vectors ...
Rdatasets: causaldata: scorecard, Earnings and Loan Repayment in US Four-Year Colleges
RedAmber::DataFrame : 48445 x 8 Vectors
Vectors : 6 numeric, 2 strings
# key                        type   level data_preview
1 :unitid                    uint32  7424 [100654, 100663, 100690, 100706, 100724, ... ]
2 :inst_name                 string  7231 ["Alabama A & M University", "University of Alabama at Birmingham", "Amridge University", "University of Alabama in Huntsville", "Alabama State University", ... ]
3 :state_abbr                string    59 ["AL", "AL", "AL", "AL", "AL", ... ]
4 :pred_degree_awarded_ipeds uint8      3 {3=>16462, 2=>11310, 1=>20673}
5 :year                      uint16     8 [2007, 2007, 2007, 2007, 2007, ... ]
6 :earnings_med              uint32   814 [36600, 40800, nil, 49300, 30500, ... ], 15706 nils
7 :count_not_working         uint16  1245 [116, 366, 6, 122, 210, ... ], 15801 nils
8 :count_working             uint32  4134 [1139, 2636, 25, 975, 1577, ... ], 14772 nils
Rdatasets: causaldata: social_insure, Data from "Social Networks and the Decision to Insure"
RedAmber::DataFrame : 1410 x 13 Vectors
Vectors : 11 numeric, 2 strings
#  key              type   level data_preview
1  :address         string   166 ["beilian2", "beilian2", "beilian2", "beilian2", "beilian2", ... ]
2  :village         string    44 ["beilian", "beilian", "beilian", "beilian", "beilian", ... ]
3  :takeup_survey   uint8      2 {0=>756, 1=>654}
4  :age             uint8     69 [62, 63, 44, 76, 52, ... ], 4 nils
5  :agpop           uint8     17 [2, 5, 3, 6, 6, ... ], 6 nils
6  :ricearea_2010   double   167 [10.0, 15.0, 7.5, nil, 11.0, ... ], 9 nils
7  :disaster_prob   double    22 [30.0, 100.0, 20.0, 50.0, 0.0, ... ]
8  :male            uint8      3 {1=>1270, 0=>137, nil=>3}
9  :default         uint8      2 {1=>683, 0=>727}
10 :intensive       uint8      2 {0=>717, 1=>693}
11 :risk_averse     double     6 [0.0, 0.0, 0.0, 0.60000002, 0.19999999, ... ]
12 :literacy        uint8      3 {0=>287, 1=>1102, nil=>21}
13 :pre_takeup_rate double    76 [0.071428575, 0.071428575, 0.071428575, 0.071428575, 0.071428575, ... ]
Rdatasets: causaldata: thornton_hiv, Data from HIV information experiment in Thornton (2008)
RedAmber::DataFrame : 4820 x 7 Vectors
Vectors : 7 numeric
# key      type   level data_preview
1 :villnum uint8    125 [1, 1, 1, 1, 1, ... ], 27 nils
2 :got     uint8      3 {1=>2016, nil=>1926, 0=>878}
3 :distvct double  2492 [2.71892142295837, 2.83503913879395, 2.4857132434845, 2.83503913879395, 1.83713066577911, ... ]
4 :tinc    double    28 [2.08031988143921, nil, 1.8911999464035, nil, 0.0945599973201752, ... ], 1919 nils
5 :any     uint8      3 {1=>2222, nil=>1919, 0=>679}
6 :age     uint8     71 [22, 44, 19, 30, 53, ... ], 441 nils
7 :hiv2004 int8       4 {0=>2695, nil=>1926, 1=>185, -1=>14}
Rdatasets: cluster: animals, Attributes of Animals
RedAmber::DataFrame : 20 x 6 Vectors
Vectors : 6 numeric
# key  type  level data_preview
1 :war uint8     2 {1=>10, 2=>10}
2 :fly uint8     2 {1=>16, 2=>4}
3 :ver uint8     2 {1=>6, 2=>14}
4 :end uint8     3 {1=>12, 2=>6, nil=>2}
5 :gro uint8     3 {2=>11, 1=>6, nil=>3}
6 :hai uint8     2 {1=>11, 2=>9}
Rdatasets: cluster: plantTraits, Plant Species Traits Data
RedAmber::DataFrame : 136 x 31 Vectors
Vectors : 31 numeric
#  key        type   level data_preview
1  :pdias     double    95 [96.84, 110.72, 0.06, 0.08, 1.48, ... ], 36 nils
2  :longindex double    61 [0.0, 0.0, 0.666666667, 0.488888889, 0.476190476, ... ], 25 nils
3  :durflow   uint8      9 [2, 3, 3, 2, 3, ... ]
4  :height    uint8      8 [7, 8, 2, 2, 2, ... ]
5  :begflow   uint8      9 [5, 4, 6, 7, 5, ... ]
6  :mycor     uint8      4 {2=>68, 1=>19, 0=>10, nil=>39}
7  :vegaer    uint8      4 {0=>117, 2=>12, 1=>5, nil=>2}
8  :vegsout   uint8      4 {0=>96, 1=>19, 2=>19, nil=>2}
9  :autopoll  uint8      4 {0=>73, 1=>26, 3=>21, 2=>16}
10 :insects   uint8      5 {4=>17, 0=>41, 3=>62, 2=>5, 1=>11}
11 :wind      uint8      5 {0=>95, 4=>17, 3=>20, 1=>2, 2=>2}
12 :lign      uint8      2 {1=>43, 0=>93}
13 :piq       uint8      2 {0=>119, 1=>17}
14 :ros       uint8      3 {0=>120, 1=>12, nil=>4}
15 :semiros   uint8      3 {0=>97, 1=>35, nil=>4}
16 :leafy     uint8      3 {1=>85, 0=>47, nil=>4}
17 :suman     uint8      2 {0=>117, 1=>19}
18 :winan     uint8      2 {0=>124, 1=>12}
19 :monocarp  uint8      2 {0=>127, 1=>9}
20 :polycarp  uint8      2 {1=>117, 0=>19}
 ... 11 more Vectors ...
Rdatasets: cluster: votes.repub, Votes for Republican Candidate in Presidential Elections
RedAmber::DataFrame : 50 x 31 Vectors
Vectors : 31 numeric
#  key    type   level data_preview
1  :X1856 double    21 [nil, nil, nil, nil, 18.77, ... ], 30 nils
2  :X1860 double    24 [nil, nil, nil, nil, 32.96, ... ], 27 nils
3  :X1864 double    26 [nil, nil, nil, nil, 58.63, ... ], 25 nils
4  :X1868 double    34 [51.44, nil, nil, 53.73, 50.24, ... ], 17 nils
5  :X1872 double    38 [53.19, nil, nil, 52.17, 56.38, ... ], 13 nils
6  :X1876 double    38 [40.02, nil, nil, 39.88, 50.88, ... ], 13 nils
7  :X1880 double    39 [36.98, nil, nil, 39.55, 48.92, ... ], 12 nils
8  :X1884 double    38 [38.44, nil, nil, 40.5, 52.08, ... ], 12 nils
9  :X1888 double    39 [32.28, nil, nil, 38.07, 49.95, ... ], 12 nils
10 :X1892 double    43 [3.95, nil, nil, 32.01, 43.76, ... ], 8 nils
11 :X1896 double    45 [28.13, nil, nil, 25.11, 49.13, ... ], 6 nils
12 :X1900 double    45 [34.67, nil, nil, 35.04, 54.48, ... ], 6 nils
13 :X1904 double    45 [20.65, nil, nil, 40.25, 61.9, ... ], 6 nils
14 :X1908 double    44 [24.38, nil, nil, 37.31, 55.46, ... ], 5 nils
15 :X1912 double    47 [8.26, nil, 12.74, 19.73, 0.58, ... ], 3 nils
16 :X1916 double    48 [21.97, nil, 35.37, 28.01, 46.26, ... ], 2 nils
17 :X1920 double    49 [30.98, nil, 55.41, 38.73, 66.24, ... ], 2 nils
18 :X1924 double    48 [27.01, nil, 41.26, 29.28, 57.21, ... ], 2 nils
19 :X1928 double    49 [48.49, nil, 57.57, 39.33, 64.7, ... ], 2 nils
20 :X1932 double    49 [14.15, nil, 30.53, 12.91, 37.4, ... ], 2 nils
 ... 11 more Vectors ...
Rdatasets: COUNT: loomis, loomis
RedAmber::DataFrame : 410 x 11 Vectors
Vectors : 11 numeric
#  key       type   level data_preview
1  :anvisits uint16    48 [nil, nil, nil, nil, nil, ... ], 26 nils
2  :gender   uint8      3 {1=>245, 2=>155, nil=>10}
3  :income   uint8      5 {4=>144, 2=>97, nil=>29, 1=>53, 3=>87}
4  :income1  uint8      3 {0=>328, nil=>29, 1=>53}
5  :income2  uint8      3 {0=>284, 1=>97, nil=>29}
6  :income3  uint8      3 {0=>294, nil=>29, 1=>87}
7  :income4  uint8      3 {1=>144, 0=>237, nil=>29}
8  :travel   uint8      4 {nil=>43, 3=>130, 2=>142, 1=>95}
9  :travel1  uint8      3 {nil=>43, 0=>272, 1=>95}
10 :travel2  uint8      3 {nil=>43, 0=>225, 1=>142}
11 :travel3  uint8      3 {nil=>43, 1=>130, 0=>237}
Rdatasets: COUNT: ships, ships
RedAmber::DataFrame : 40 x 7 Vectors
Vectors : 7 numeric
# key         type   level data_preview
1 :accident   uint8     17 [0, 0, 3, 4, 6, ... ], 6 nils
2 :op         uint8      2 {0=>20, 1=>20}
3 :"co.65.69" uint8      2 {0=>30, 1=>10}
4 :"co.70.74" uint8      2 {0=>30, 1=>10}
5 :"co.75.79" uint8      2 {0=>30, 1=>10}
6 :service    uint16    34 [127, 63, 1095, 1095, 1512, ... ], 6 nils
7 :ship       uint8      5 {1=>8, 2=>8, 3=>8, 4=>8, 5=>8}
Rdatasets: DAAG: bomregions, Australian and Related Historical Annual Climate Data, by region
RedAmber::DataFrame : 109 x 22 Vectors
Vectors : 22 numeric
#  key        type   level data_preview
1  :Year      uint16   109 [1900, 1901, 1902, 1903, 1904, ... ]
2  :eastAVt   double    86 [nil, nil, nil, nil, nil, ... ], 10 nils
3  :seAVt     double    89 [nil, nil, nil, nil, nil, ... ], 10 nils
4  :southAVt  double    83 [nil, nil, nil, nil, nil, ... ], 10 nils
5  :swAVt     double    88 [nil, nil, nil, nil, nil, ... ], 10 nils
6  :westAVt   double    88 [nil, nil, nil, nil, nil, ... ], 10 nils
7  :northAVt  double    84 [nil, nil, nil, nil, nil, ... ], 10 nils
8  :mdbAVt    double    86 [nil, nil, nil, nil, nil, ... ], 10 nils
9  :auAVt     double    82 [nil, nil, nil, nil, nil, ... ], 10 nils
10 :eastRain  double   109 [429.98, 500.12, 315.33, 694.09, 564.86, ... ]
11 :seRain    double   109 [603.39, 510.89, 420.77, 628.07, 550.98, ... ]
12 :southRain double   108 [375.39, 314.01, 283.64, 420.83, 388.11, ... ]
13 :swRain    double   109 [738.28, 558.98, 541.85, 729.44, 711.39, ... ]
14 :westRain  double   109 [399.9, 323.07, 362.57, 377.11, 417.96, ... ]
15 :northRain double   109 [360.29, 475.92, 344.86, 601.27, 603.84, ... ]
16 :mdbRain   double   109 [412.67, 364.65, 255.85, 524.88, 448.4, ... ]
17 :auRain    double   109 [368.73, 401.72, 317.18, 518.59, 504.65, ... ]
18 :SOI       double   109 [-5.55, 0.991666666666667, 0.458333333333333, 4.93333333333333, 4.35, ... ]
19 :co2mlo    double    51 [nil, nil, nil, nil, nil, ... ], 59 nils
20 :co2law    double    73 [295.8, 296.1, 296.5, 296.8, 297.2, ... ], 30 nils
 ... 2 more Vectors ...
Rdatasets: DAAG: bomregions2011, Australian and Related Historical Annual Climate Data, by region
RedAmber::DataFrame : 112 x 22 Vectors
Vectors : 22 numeric
#  key        type   level data_preview
1  :Year      uint16   112 [1900, 1901, 1902, 1903, 1904, ... ]
2  :eastAVt   double    78 [nil, nil, nil, nil, nil, ... ], 10 nils
3  :seAVt     double    76 [nil, nil, nil, nil, nil, ... ], 10 nils
4  :southAVt  double    75 [nil, nil, nil, nil, nil, ... ], 10 nils
5  :swAVt     double    79 [nil, nil, nil, nil, nil, ... ], 10 nils
6  :westAVt   double    80 [nil, nil, nil, nil, nil, ... ], 10 nils
7  :northAVt  double    74 [nil, nil, nil, nil, nil, ... ], 10 nils
8  :mdbAVt    double    70 [nil, nil, nil, nil, nil, ... ], 10 nils
9  :auAVt     double    76 [nil, nil, nil, nil, nil, ... ], 10 nils
10 :eastRain  double   112 [453.33, 530.68, 330.49, 727.58, 596.4, ... ]
11 :seRain    double   112 [654.62, 568.21, 462.3, 688.05, 606.53, ... ]
12 :southRain double   111 [375.24, 322.03, 287.95, 431.21, 395.46, ... ]
13 :swRain    double   112 [789.97, 582.94, 566.51, 777.12, 768.53, ... ]
14 :westRain  double   112 [383.62, 301.37, 343.9, 360.95, 402.97, ... ]
15 :northRain double   112 [369.1, 478.01, 335.81, 607.08, 613.28, ... ]
16 :mdbRain   double   111 [418.89, 372.09, 258.11, 534.63, 457.26, ... ]
17 :auRain    double   112 [373.38, 406.65, 314.46, 526.58, 513.16, ... ]
18 :SOI       double   112 [-5.55, 0.991666666666667, 0.458333333333333, 4.93333333333333, 4.35, ... ]
19 :co2mlo    double    54 [nil, nil, nil, nil, nil, ... ], 59 nils
20 :co2law    double    73 [295.8, 296.1, 296.5, 296.8, 297.2, ... ], 33 nils
 ... 2 more Vectors ...
Rdatasets: DAAG: bomregions2012, Australian and Related Historical Annual Climate Data, by region
RedAmber::DataFrame : 113 x 22 Vectors
Vectors : 22 numeric
#  key        type   level data_preview
1  :Year      uint16   113 [1900, 1901, 1902, 1903, 1904, ... ]
2  :eastAVt   double    74 [nil, nil, nil, nil, nil, ... ], 10 nils
3  :seAVt     double    75 [nil, nil, nil, nil, nil, ... ], 10 nils
4  :southAVt  double    81 [nil, nil, nil, nil, nil, ... ], 10 nils
5  :swAVt     double    81 [nil, nil, nil, nil, nil, ... ], 10 nils
6  :westAVt   double    72 [nil, nil, nil, nil, nil, ... ], 10 nils
7  :northAVt  double    82 [nil, nil, nil, nil, nil, ... ], 10 nils
8  :mdbAVt    double    85 [nil, nil, nil, nil, nil, ... ], 10 nils
9  :auAVt     double    77 [nil, nil, nil, nil, nil, ... ], 10 nils
10 :eastRain  double   113 [453.33, 530.68, 330.49, 727.58, 596.4, ... ]
11 :seRain    double   113 [654.62, 568.21, 462.3, 688.05, 606.53, ... ]
12 :southRain double   112 [375.24, 322.03, 287.95, 431.21, 395.46, ... ]
13 :swRain    double   113 [789.97, 582.94, 566.51, 777.12, 768.53, ... ]
14 :westRain  double   113 [383.62, 301.37, 343.9, 360.95, 402.97, ... ]
15 :northRain double   113 [369.1, 478.01, 335.81, 607.08, 613.28, ... ]
16 :mdbRain   double   112 [418.89, 372.09, 258.11, 534.63, 457.26, ... ]
17 :auRain    double   113 [373.38, 406.65, 314.46, 526.58, 513.16, ... ]
18 :SOI       double   113 [-5.55, 0.991666666666667, 0.458333333333333, 4.93333333333333, 4.35, ... ]
19 :co2mlo    double    55 [nil, nil, nil, nil, nil, ... ], 59 nils
20 :co2law    double    73 [295.8, 296.1, 296.5, 296.8, 297.2, ... ], 34 nils
 ... 2 more Vectors ...
Rdatasets: DAAG: cuckoohosts, Comparison of cuckoo eggs with host eggs
RedAmber::DataFrame : 10 x 12 Vectors
Vectors : 12 numeric
#  key       type   level data_preview
1  :clength  double     8 [22.3, 23.1, 22.5, 22.6, 23.1, ... ]
2  :"cl.sd"  double    10 [0.89, 1.01, 0.66, 0.9, 0.85, ... ]
3  :cbreadth double     6 [16.7, 16.8, 16.4, 16.6, 16.6, ... ]
4  :"cb.sd"  double     9 [0.38, 0.52, 0.53, 0.45, 0.44, ... ]
5  :cnum     uint8      8 [45, 14, 16, 26, 15, ... ]
6  :hlength  double     8 [19.7, 20.1, 20.2, 20.75, 20.0, ... ], 3 nils
7  :"hl.sd"  double     8 [1.25, 0.81, 0.86, 1.44, 0.7, ... ], 3 nils
8  :hbreadth double     8 [14.6, 14.7, 15.4, 14.67, 15.1, ... ], 3 nils
9  :"hb.sd"  double     8 [0.56, 14.7, 15.4, 0.37, 0.48, ... ], 2 nils
10 :hnum     uint8      7 [74, 26, 57, 16, 27, ... ], 4 nils
11 :match    uint8      7 [56, 1, 7, 26, 11, ... ]
12 :nomatch  uint8      9 [6, 19, 11, 3, 4, ... ]
Rdatasets: DAAG: measles, Deaths in London from measles
RedAmber::DataFrame : 311 x 2 Vectors
Vectors : 2 numeric
# key    type   level data_preview
1 :time  uint16   311 [1629, 1630, 1631, 1632, 1633, ... ]
2 :value uint16   214 [42, 2, 3, 80, 21, ... ], 62 nils
Rdatasets: DAAG: nassCDS, Airbag and other influences on accident fatalities
RedAmber::DataFrame : 26217 x 15 Vectors
Vectors : 7 numeric, 8 strings
#  key          type   level data_preview
1  :dvcat       string     5 {"25-39"=>8214, "10-24"=>12848, "40-54"=>2977, "55+"=>1492, "1-9km/h"=>686}
2  :weight      double 10131 [25.0689999999013, 25.0689999999013, 32.3789999997243, 495.443999998271, 25.0689999999013, ... ]
3  :dead        string     2 {"alive"=>25037, "dead"=>1180}
4  :airbag      string     2 {"none"=>11798, "airbag"=>14419}
5  :seatbelt    string     2 {"belted"=>18573, "none"=>7644}
6  :frontal     uint8      2 {1=>16866, 0=>9351}
7  :sex         string     2 {"f"=>12248, "m"=>13969}
8  :ageOFocc    uint8     82 [26, 72, 69, 53, 32, ... ]
9  :yearacc     uint16     6 [1997, 1997, 1997, 1997, 1997, ... ]
10 :yearVeh     uint16    46 [1990, 1995, 1988, 1995, 1988, ... ], 1 nil
11 :abcat       string     3 {"unavail"=>11798, "deploy"=>8836, "nodeploy"=>5583}
12 :occRole     string     2 {"driver"=>20601, "pass"=>5616}
13 :deploy      uint8      2 {0=>17381, 1=>8836}
14 :injSeverity uint8      8 [3, 1, 4, 1, 3, ... ], 153 nils
15 :caseid      string  9409 ["2:3:1", "2:3:2", "2:5:1", "2:10:1", "2:11:1", ... ]
Rdatasets: DAAG: nswdemo, Labour Training Evaluation Data
RedAmber::DataFrame : 722 x 10 Vectors
Vectors : 10 numeric
#  key    type   level data_preview
1  :trt   uint8      2 {0=>425, 1=>297}
2  :age   uint8     35 [23, 26, 22, 34, 18, ... ]
3  :educ  uint8     14 [10, 12, 9, 9, 9, ... ]
4  :black uint8      2 {1=>578, 0=>144}
5  :hisp  uint8      2 {0=>646, 1=>76}
6  :marr  uint8      2 {0=>605, 1=>117}
7  :nodeg uint8      2 {1=>563, 0=>159}
8  :re74  double   116 [0.0, 0.0, 0.0, nil, 0.0, ... ], 277 nils
9  :re75  double   424 [0.0, 0.0, 0.0, 4368.413, 0.0, ... ]
10 :re78  double   524 [0.0, 12383.68, 0.0, 14051.16, 10740.08, ... ]
Rdatasets: DAAG: possum, Possum Measurements
RedAmber::DataFrame : 104 x 14 Vectors
Vectors : 12 numeric, 2 strings
#  key       type   level data_preview
1  :case     uint8    104 [1, 2, 3, 4, 5, ... ]
2  :site     uint8      7 [1, 1, 1, 1, 1, ... ]
3  :Pop      string     2 {"Vic"=>46, "other"=>58}
4  :sex      string     2 {"m"=>61, "f"=>43}
5  :age      uint8     10 [8, 6, 6, 6, 2, ... ], 2 nils
6  :hdlngth  double    71 [94.1, 92.5, 94.0, 93.2, 91.5, ... ]
7  :skullw   double    64 [60.4, 57.6, 60.0, 57.1, 56.3, ... ]
8  :totlngth double    34 [89.0, 91.5, 95.5, 92.0, 85.5, ... ]
9  :taill    double    19 [36.0, 36.5, 39.0, 38.0, 36.0, ... ]
10 :footlgth double    76 [74.5, 72.5, 75.4, 76.1, 71.0, ... ], 1 nil
11 :earconch double    69 [54.5, 51.2, 51.9, 52.2, 53.2, ... ]
12 :eye      double    35 [15.2, 16.0, 15.5, 15.2, 15.1, ... ]
13 :chest    double    19 [28.0, 28.5, 30.0, 28.0, 28.5, ... ]
14 :belly    double    24 [36.0, 33.0, 34.0, 34.0, 33.0, ... ]
Rdatasets: DAAG: poxetc, Deaths from various causes, in London from 1629 till 1881, with gaps
RedAmber::DataFrame : 253 x 5 Vectors
Vectors : 5 numeric
# key          type   level data_preview
1 :fpox        uint16   222 [72, 40, 58, 531, 72, ... ], 19 nils
2 :measles     uint16   192 [42, 2, 3, 80, 21, ... ], 33 nils
3 :all         uint32   233 [8814, 10471, 8458, 9539, 8427, ... ], 19 nils
4 :fpox2all    double   232 [8.17, 3.82, 6.85, 55.66, 8.54, ... ], 19 nils
5 :measles2all double   211 [4.47, 0.19, 0.35, 8.38, 2.49, ... ], 33 nils
Rdatasets: DAAG: rainforest, Rainforest Data
RedAmber::DataFrame : 65 x 7 Vectors
Vectors : 6 numeric, 1 string
# key      type   level data_preview
1 :dbh     uint8     26 [6, 23, 20, 23, 24, ... ]
2 :wood    uint16    56 [nil, 353, 208, 445, 590, ... ], 1 nil
3 :bark    uint8      5 {nil=>61, 105=>1, 78=>1, 8=>1, 13=>1}
4 :root    uint8     12 [6, 135, nil, nil, nil, ... ], 52 nils
5 :rootsk  double    12 [0.3, 13.0, nil, nil, nil, ... ], 52 nils
6 :branch  uint8     34 [nil, 35, 41, 50, nil, ... ], 22 nils
7 :species string     4 {"Acacia mabellae"=>16, "C. fraseri"=>12, "Acmena smithii"=>26, "B. myrtifolia"=>11}
Rdatasets: DAAG: socsupport, Social Support Data
RedAmber::DataFrame : 95 x 20 Vectors
Vectors : 12 numeric, 8 strings
#  key           type   level data_preview
1  :gender       string     2 {"male"=>24, "female"=>71}
2  :age          string     5 {"21-24"=>35, "18-20"=>44, "25-30"=>6, "40+"=>4, "31-40"=>6}
3  :country      string     2 {"australia"=>85, "other"=>10}
4  :marital      string     3 {"other"=>10, "single"=>76, "married"=>9}
5  :livewith     string     6 ["partner", "partner", "residences", "parents", "friends", ... ]
6  :employment   string     5 {"employed part-time"=>45, "parental support"=>19, "govt assistance"=>14, "employed fulltime"=>2, "other"=>15}
7  :firstyr      string     2 {"other"=>71, "first year"=>24}
8  :enrolment    string     3 {"full-time"=>79, "part-time"=>12, ""=>4}
9  :emotional    uint8     17 [22, 21, 21, 19, 16, ... ]
10 :emotionalsat uint8     15 [23, 20, 18, 19, 19, ... ], 1 nil
11 :tangible     uint8     17 [17, 12, 16, 20, 11, ... ], 1 nil
12 :tangiblesat  uint8     13 [18, 10, 16, 17, 15, ... ], 3 nils
13 :affect       uint8     12 [15, 10, 15, 11, 6, ... ]
14 :affectsat    uint8     12 [15, 6, 15, 11, 10, ... ]
15 :psi          uint8     11 [12, 9, 13, 13, 11, ... ]
16 :psisat       uint8      9 [13, 6, 12, 12, 12, ... ]
17 :esupport     uint8     14 [13, 12, 14, 15, 9, ... ], 1 nil
18 :psupport     uint8     16 [11, 7, 13, 15, 7, ... ], 2 nils
19 :supsources   uint8     13 [13, 10, 14, 15, 9, ... ], 2 nils
20 :BDI          uint8     29 [5, 8, 16, 0, 9, ... ]
Rdatasets: datasets: airquality, New York Air Quality Measurements
RedAmber::DataFrame : 153 x 6 Vectors
Vectors : 6 numeric
# key        type   level data_preview
1 :Ozone     uint8     68 [41, 36, 12, 18, nil, ... ], 37 nils
2 :"Solar.R" uint16   118 [190, 118, 149, 313, nil, ... ], 7 nils
3 :Wind      double    31 [7.4, 8.0, 12.6, 11.5, 14.3, ... ]
4 :Temp      uint8     40 [67, 72, 74, 62, 56, ... ]
5 :Month     uint8      5 {5=>31, 6=>30, 7=>31, 8=>31, 9=>30}
6 :Day       uint8     31 [1, 2, 3, 4, 5, ... ]
Rdatasets: datasets: presidents, Quarterly Approval Ratings of US Presidents
RedAmber::DataFrame : 120 x 2 Vectors
Vectors : 2 numeric
# key    type   level data_preview
1 :time  double   120 [1945.0, 1945.25, 1945.5, 1945.75, 1946.0, ... ]
2 :value uint8     50 [nil, 87, 82, 75, 63, ... ], 6 nils
Rdatasets: dplyr: starwars, Starwars characters
RedAmber::DataFrame : 87 x 11 Vectors
Vectors : 3 numeric, 8 strings
#  key         type   level data_preview
1  :name       string    87 ["Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader", "Leia Organa", ... ]
2  :height     uint16    46 [172, 167, 96, 202, 150, ... ], 6 nils
3  :mass       double    39 [77.0, 75.0, 32.0, 136.0, 49.0, ... ], 28 nils
4  :hair_color string    13 ["blond", nil, nil, "none", "brown", ... ], 5 nils
5  :skin_color string    31 ["fair", "gold", "white, blue", "white", "light", ... ]
6  :eye_color  string    15 ["blue", "yellow", "red", "yellow", "brown", ... ]
7  :birth_year double    37 [19.0, 112.0, 33.0, 41.9, 19.0, ... ], 44 nils
8  :sex        string     5 {"male"=>60, "none"=>6, "female"=>16, "hermaphroditic"=>1, nil=>4}
9  :gender     string     3 {"masculine"=>66, "feminine"=>17, nil=>4}
10 :homeworld  string    49 ["Tatooine", "Tatooine", "Naboo", "Tatooine", "Alderaan", ... ], 10 nils
11 :species    string    38 ["Human", "Droid", "Droid", "Human", "Human", ... ], 4 nils
Rdatasets: dplyr: storms, Storm tracks data
RedAmber::DataFrame : 10010 x 13 Vectors
Vectors : 11 numeric, 2 strings
#  key          type   level data_preview
1  :name        string   198 ["Amy", "Amy", "Amy", "Amy", "Amy", ... ]
2  :year        uint16    41 [1975, 1975, 1975, 1975, 1975, ... ]
3  :month       uint8     10 [6, 6, 6, 6, 6, ... ]
4  :day         uint8     31 [27, 27, 27, 27, 28, ... ]
5  :hour        uint8     24 [0, 6, 12, 18, 0, ... ]
6  :lat         double   403 [27.5, 28.5, 29.5, 30.5, 31.5, ... ]
7  :long        int8      99 [-79, -79, -79, -79, -78, ... ]
8  :status      string     3 {"tropical depression"=>2545, "tropical storm"=>4374, "hurricane"=>3091}
9  :category    int8       7 [-1, -1, -1, -1, -1, ... ]
10 :wind        uint8     31 [25, 25, 25, 25, 25, ... ]
11 :pressure    uint16   124 [1013, 1013, 1013, 1013, 1012, ... ]
12 :ts_diameter double   109 [nil, nil, nil, nil, nil, ... ], 6528 nils
13 :hu_diameter double    35 [nil, nil, nil, nil, nil, ... ], 6528 nils
Rdatasets: dragracer: rpdr_contep, RuPaul's Drag Race Episode-Contestant Data
RedAmber::DataFrame : 2096 x 11 Vectors
Vectors : 8 numeric, 3 strings
#  key          type   level data_preview
1  :season      string    13 ["S01", "S01", "S01", "S01", "S01", ... ]
2  :rank        uint8     16 [1, 2, 3, 4, 5, ... ], 14 nils
3  :missc       uint8      3 {0=>1924, 1=>158, nil=>14}
4  :contestant  string   166 ["BeBe Zahara Benet", "Nina Flowers", "Rebecca Glasscock", "Shannel", "Ongina", ... ]
5  :episode     uint8     16 [1, 1, 1, 1, 1, ... ]
6  :outcome     string    20 ["SAFE", "WIN", "LOW", "SAFE", "HIGH", ... ], 798 nils
7  :eliminated  uint8      3 {0=>1178, 1=>120, nil=>798}
8  :participant uint8      2 {1=>1298, 0=>798}
9  :minichalw   uint8      3 {0=>1232, nil=>798, 1=>66}
10 :finale      uint8      2 {0=>1926, 1=>170}
11 :penultimate uint8      2 {0=>2056, 1=>40}
Rdatasets: Ecdat: Accident, Ship Accidents
RedAmber::DataFrame : 40 x 5 Vectors
Vectors : 2 numeric, 3 strings
# key      type   level data_preview
1 :type    string     5 {"A"=>8, "B"=>8, "C"=>8, "D"=>8, "E"=>8}
2 :constr  string     4 {"C6064"=>9, "C6569"=>10, "C7074"=>10, "C7579"=>11}
3 :operate string     2 {"O6074"=>19, "O7579"=>21}
4 :months  uint16    34 [127, 63, 1095, 1095, 1512, ... ], 6 nils
5 :acc     uint8     17 [0, 0, 3, 4, 6, ... ], 6 nils
Rdatasets: Ecdat: bankingCrises, Countries in Banking Crises
RedAmber::DataFrame : 211 x 71 Vectors
Vectors : 71 numeric
#  key                type   level data_preview
1  :year              uint16   211 [1800, 1801, 1802, 1803, 1804, ... ]
2  :Algeria           uint8      2 {0=>208, 1=>3}
3  :Angola            uint8      2 {0=>204, 1=>7}
4  :Argentina         uint8      2 {0=>196, 1=>15}
5  :Australia         uint8      2 {0=>202, 1=>9}
6  :Austria           uint8      2 {0=>204, 1=>7}
7  :Belgium           uint8      2 {0=>196, 1=>15}
8  :Bolivia           uint8      2 {0=>204, 1=>7}
9  :Brazil            uint8      2 {0=>195, 1=>16}
10 :Canada            uint8      2 {0=>201, 1=>10}
11 :CentralAfricanRep uint8      2 {0=>192, 1=>19}
12 :Chile             uint8      2 {0=>200, 1=>11}
13 :China             uint8      2 {0=>185, 1=>26}
14 :Colombia          uint8      2 {0=>203, 1=>8}
15 :CostaRica         uint8      2 {0=>207, 1=>4}
16 :CoteDIvoire       uint8      2 {0=>207, 1=>4}
17 :Denmark           uint8      2 {0=>194, 1=>17}
18 :DominicanRepublic uint8      2 {0=>209, 1=>2}
19 :Ecuador           uint8      2 {0=>205, 1=>6}
20 :Egypt             uint8      2 {0=>201, 1=>10}
 ... 51 more Vectors ...
Rdatasets: Ecdat: breaches, Cyber Security Breaches
RedAmber::DataFrame : 1055 x 13 Vectors
Vectors : 3 numeric, 7 strings, 3 temporal
#  key                               type   level data_preview
1  :Number                           uint16  1055 [0, 1, 2, 3, 4, ... ]
2  :Name_of_Covered_Entity           string   967 ["Brooke Army Medical Center", "Mid America Kidney Stone Association, LLC", "Alaska Department of Health and Social Services", "Health Services for Children with Special Needs, Inc.", "L. Douglas Carlson, M.D.", ... ]
3  :State                            string    52 ["TX", "MO", "AK", "DC", "CA", ... ]
4  :Business_Associate_Involved      string   232 ["", "", "", "", "", ... ]
5  :Individuals_Affected             uint32   809 [1000, 1000, 501, 3800, 5257, ... ]
6  :Date_of_Breach                   string   800 ["10/16/2009", "9/22/2009", "10/12/2009", "10/9/2009", "9/27/2009", ... ]
7  :Type_of_Breach                   string    29 ["Theft", "Theft", "Theft", "Loss", "Theft", ... ]
8  :Location_of_Breached_Information string    41 ["Paper", "Network Server", "Other Portable Electronic Device, Other", "Laptop", "Desktop Computer", ... ]
9  :Date_Posted_or_Updated           date64    43 [#<DateTime: 2014-06-30T09:00:00+09:00 ((2456839j,0s,0n),+32400s,2299161j)>, #<DateTime: 2014-05-30T09:00:00+09:00 ((2456808j,0s,0n),+32400s,2299161j)>, ... ]
10 :Summary                          string   142 ["A binder containing the protected health information (PHI) of up to 1,272 individuals was stolen from a staff member's vehicle.  The PHI included names, telephone numbers, detailed treatment notes, and possibly social security numbers.  In response to the breach, the covered entity (CE) sanctioned the workforce member and developed a new policy requiring on-call staff members to submit any information created during their shifts to the main office instead of adding it to the binder.  Following OCR's investigation, the CE notified the local media about the breach.", "Five desktop computers containing unencrypted electronic protected health information (e-PHI) were stolen from the covered entity (CE).  Originally, the CE reported that over 500 persons were involved, but subsequent investigation showed that about 260 persons were involved.  The ePHI included demographic and financial information. The CE provided breach notification to affected individuals and HHS.  Following the breach, the CE improved physical security by installing motion detectors and alarm systems security monitoring.  It improved technical safeguards by installing enhanced antivirus and encryption software.  As a result of OCR's investigation the CE updated its computer password policy.  ", "", "A laptop was lost by an employee while in transit on public transportation.  The computer contained the protected health information of 3800 individuals.  The protected health information involved in the breach included names, Medicaid ID numbers, dates of birth, and primary physicians.  In response to this incident, the covered entity took steps to enforce the requirements of the Privacy & Security Rules.  The covered entity has installed encryption software on all employee computers, strengthened access controls including passwords, reviewed and updated security policies and procedures, and updated it risk assessment.  In addition, all employees received additional security training.  \n\n", "A shared Computer that was used for backup was stolen on 9/27/09 from the reception desk area of the covered entity. The Computer contained certain electronic protected health information (ePHI) of 5,257 individuals who were patients of the CE.  The ePHI involved in the breach included names, dates of birth, and clinical information, but there were no social security numbers, financial information, addresses, phone numbers, or other ePHI in any of the reports on the disks or the hard drive on the stolen Computer. Following the breach, the covered entity notified all 5,257 affected individuals and the appropriate media; added technical safeguards of encryption for all ePHI stored on the USB flash drive or the CD used on the replacement computer; added physical safeguards by keeping new portable devices locked when not in use in a secure combination safe in doctor's private office or in a secure filing cabinet; and added administrative safeguards by requiring annual refresher retraining of CE staff for Privacy and Security Rules as well as requiring immediate retraining of cleaning staff in both Rules.\n\n", ... ]
11 :breach_start                     date64   732 [#<DateTime: 2009-10-16T09:00:00+09:00 ((2455121j,0s,0n),+32400s,2299161j)>, #<DateTime: 2009-09-22T09:00:00+09:00 ((2455097j,0s,0n),+32400s,2299161j)>, ... ]
12 :breach_end                       date64   122 [nil, nil, ... ]
13 :year                             uint16    14 [2009, 2009, 2009, 2009, 2009, ... ]
Rdatasets: Ecdat: Garch, Daily Observations on Exchange Rates of the US Dollar Against Other Currencies
RedAmber::DataFrame : 1867 x 8 Vectors
Vectors : 7 numeric, 1 string
# key   type   level data_preview
1 :date uint32  1867 [800102, 800103, 800104, 800107, 800108, ... ]
2 :day  string     5 {"wednesday"=>382, "thursday"=>374, "friday"=>376, "monday"=>355, "tuesday"=>380}
3 :dm   double  1252 [0.5861, 0.5837, 0.5842, 0.5853, 0.5824, ... ]
4 :ddm  double  1809 [nil, -0.00410327127264, 0.000856237743895, 0.00188114634353, -0.0049670394147, ... ], 1 nil
5 :bp   double  1125 [2.249, 2.2365, 2.241, 2.2645, 2.256, ... ]
6 :cd   double   929 [0.8547, 0.8552, 0.8566, 0.8538, 0.8553, ... ]
7 :dy   double  1022 [0.004206, 0.004187, 0.004269, 0.004315, 0.004257, ... ]
8 :sf   double  1144 [0.6365, 0.6357, 0.6355, 0.6373, 0.6329, ... ]
Rdatasets: Ecdat: Hstarts, Housing Starts
RedAmber::DataFrame : 168 x 2 Vectors
Vectors : 2 numeric
# key   type   level data_preview
1 :hs   double   167 [7.98933, 8.83961, 8.94841, 8.98907, 8.39087, ... ]
2 :hssa double   141 [nil, nil, nil, nil, nil, ... ], 24 nils
Rdatasets: Ecdat: MCAS, The Massachusetts Test Score Data Set
RedAmber::DataFrame : 220 x 17 Vectors
Vectors : 15 numeric, 2 strings
#  key        type   level data_preview
1  :code      uint16   220 [1, 2, 3, 5, 7, ... ]
2  :municipa  string   220 ["ABINGTON", "ACTON", "ACUSHNET", "AGAWAM", "AMESBURY", ... ]
3  :district  string   220 ["Abington", "Acton", "Acushnet", "Agawam", "Amesbury", ... ]
4  :regday    uint16   207 [4201, 4129, 3627, 4015, 4273, ... ]
5  :specneed  double   220 [7375.68994140625, 8573.990234375, 8081.72021484375, 8181.3701171875, 7037.22021484375, ... ]
6  :bilingua  uint32    47 [0, 0, 0, 0, 0, ... ]
7  :occupday  uint16    40 [0, 0, 0, 0, 0, ... ]
8  :totday    uint16   209 [4646, 4930, 4281, 4826, 4824, ... ]
9  :spc       double    94 [16.6000003814697, 5.69999980926514, 7.5, 8.60000038146973, 6.09999990463257, ... ], 9 nils
10 :speced    double   105 [14.6000003814697, 17.3999996185303, 12.1000003814697, 21.1000003814697, 16.7999992370605, ... ]
11 :lnchpct   double   154 [11.8000001907349, 2.5, 14.1000003814697, 12.1000003814697, 17.3999996185303, ... ]
12 :tchratio  double    83 [19.0, 22.6000003814697, 19.2999992370605, 17.8999996185303, 17.5, ... ]
13 :percap    double   216 [16.379, 25.792, 14.04, 16.111, 15.423, ... ]
14 :totsc4    uint16    63 [714, 731, 704, 704, 701, ... ]
15 :totsc8    uint16    73 [691, nil, 693, 691, 699, ... ], 40 nils
16 :avgsalary double   191 [34.3600006103516, 38.0629997253418, 32.4910011291504, 33.1059989929199, 34.4365005493164, ... ], 25 nils
17 :pctel     double    92 [0.0, 1.24610590934753, 0.0, 0.322580635547638, 0.0, ... ]
Rdatasets: Ecdat: nuclearWeaponStates, Nations with nuclear weapons
RedAmber::DataFrame : 9 x 17 Vectors
Vectors : 12 numeric, 3 strings, 2 temporal
#  key                      type   level data_preview
1  :nation                  string     9 ["US", "Russia", "UK", "France", "China", ... ]
2  :ctry                    string     9 ["US", "RU", "GB", "FR", "CN", ... ]
3  :firstTest               date64     9 [#<DateTime: 1945-07-16T09:00:00+09:00 ((2431653j,0s,0n),+32400s,2299161j)>, #<DateTime: 1949-08-29T10:00:00+10:00 ((2433158j,0s,0n),+36000s,2299161j)>, ... ]
4  :firstTestYr             double     9 [1945.53698630137, 1949.65753424658, 1952.75409836066, 1960.1174863388, 1964.78961748634, ... ]
5  :yearsSinceLastFirstTest double     9 [nil, 4.12054794520554, 3.09656411408037, 7.3633879781421, 4.67213114754099, ... ], 1 nil
6  :nuclearWeapons          uint16     9 [6550, 6490, 225, 300, 280, ... ]
7  :nYieldNA                uint16     9 [3830, 4509, 0, 60, 46, ... ]
8  :nLowYield               uint8      4 {0=>6, 92=>1, 38=>1, 78=>1}
9  :nMidYield               uint8      2 {0=>8, 44=>1}
10 :nHighYield              uint16     6 [2720, 1889, 225, 240, 234, ... ]
11 :popM                    double     9 [328.2, 146.7, 67.5, 67.0, 1427.6, ... ]
12 :popYr                   uint16     4 {2019=>3, 2020=>2, 2018=>3, 2017=>1}
13 :GDP_B                   double     9 [21439.0, 1657.0, 2744.0, 2771.0, 14140.0, ... ]
14 :GDPyr                   uint16     4 {2019=>5, 2020=>2, 219=>1, 2017=>1}
15 :Maddison                string     9 ["USA", "SUN", "GBR", "FRA", "CHN", ... ]
16 :startNucPgm             date64     9 [#<DateTime: 1942-01-19T09:00:00+09:00 ((2430379j,0s,0n),+32400s,2299161j)>, #<DateTime: 1945-08-22T09:00:00+09:00 ((2431690j,0s,0n),+32400s,2299161j)>, ... ]
17 :startNucPgmYr           double     9 [1942.04931506849, 1945.63835616438, 1947.01917808219, 1956.84972677596, 1955.30684931507, ... ]
Rdatasets: Ecdat: Orange, The Orange Juice Data Set
RedAmber::DataFrame : 642 x 3 Vectors
Vectors : 3 numeric
# key      type   level data_preview
1 :priceoj double   281 [43.3, 39.0, 39.0, 39.0, 39.0, ... ]
2 :pricefg double   373 [28.10000038, 27.89962, 27.89962, 28.0, 28.20000076, ... ]
3 :fdd     uint8     21 [nil, 6, 0, 0, 0, ... ], 1 nil
Rdatasets: Ecdat: PSID, Panel Survey of Income Dynamics
RedAmber::DataFrame : 4856 x 8 Vectors
Vectors : 7 numeric, 1 string
# key       type   level data_preview
1 :intnum   uint16  2929 [4, 4, 4, 4, 5, ... ]
2 :persnum  uint8     49 [4, 6, 7, 173, 2, ... ]
3 :age      uint8     21 [39, 35, 33, 39, 47, ... ]
4 :educatn  uint8     21 [12, 12, 12, 10, 9, ... ], 1 nil
5 :earnings uint32   953 [77250, 12000, 8000, 15000, 6500, ... ]
6 :hours    uint16  1278 [2940, 2040, 693, 1904, 1683, ... ]
7 :kids     uint8     13 [2, 2, 1, 2, 5, ... ]
8 :married  string     7 ["married", "divorced", "married", "married", "married", ... ]
Rdatasets: Ecdat: RetSchool, Return to Schooling
RedAmber::DataFrame : 5225 x 17 Vectors
Vectors : 17 numeric
#  key       type   level data_preview
1  :wage76   double   760 [nil, 1.7011, 1.5707, 1.9755, 0.9163, ... ], 2147 nils
2  :grade76  uint8     20 [nil, 7, 12, 12, 11, ... ], 1554 nils
3  :exp76    uint8     27 [nil, 16, 9, 16, 10, ... ], 1554 nils
4  :black    uint8      2 {1=>1438, 0=>3787}
5  :south76  uint8      3 {nil=>1530, 0=>2230, 1=>1465}
6  :smsa76   uint8      2 {0=>2655, 1=>2570}
7  :region   uint8      9 [1, 1, 1, 1, 2, ... ]
8  :smsa66   uint8      2 {1=>3448, 0=>1777}
9  :momdad14 uint8      2 {0=>1212, 1=>4013}
10 :sinmom14 uint8      2 {1=>618, 0=>4607}
11 :nodaded  uint8      2 {1=>1295, 0=>3930}
12 :nomomed  uint8      2 {0=>4573, 1=>652}
13 :daded    double    20 [9.9372, 9.9372, 8.0, 14.0, 11.0, ... ]
14 :momed    double    20 [11.0, 10.251, 8.0, 12.0, 12.0, ... ]
15 :famed    uint8      9 [9, 9, 8, 2, 6, ... ]
16 :age76    uint8     11 [28, 29, 27, 34, 27, ... ]
17 :col4     uint8      2 {0=>1610, 1=>3615}
Rdatasets: Ecdat: terrorism, Global Terrorism Database yearly summaries
RedAmber::DataFrame : 46 x 25 Vectors
Vectors : 23 numeric, 2 strings
#  key              type   level data_preview
1  :year            uint16    46 [1970, 1971, 1972, 1973, 1974, ... ]
2  :methodology     string     4 {"PGIS"=>28, "CETIS"=>10, "ISVG"=>4, "START"=>4}
3  :method          string     4 {"p"=>28, "c"=>10, "i"=>4, "s"=>4}
4  :incidents       uint16    46 [651, 470, 494, 473, 580, ... ]
5  :"incidents.us"  uint16    38 [468, 247, 64, 58, 94, ... ], 1 nil
6  :suicide         uint16    27 [0, 0, 0, 0, 0, ... ], 1 nil
7  :"suicide.us"    uint8      5 {0=>40, nil=>1, 1=>3, 4=>1, 2=>1}
8  :nkill           uint16    46 [171, 173, 566, 370, 542, ... ]
9  :"nkill.us"      uint16    36 [28, 15, 12, 73, 17, ... ]
10 :nwound          uint16    46 [192, 82, 222, 495, 754, ... ]
11 :"nwound.us"     uint16    42 [132, 48, 23, 87, 63, ... ]
12 :"pNA.nkill"     double    46 [0.064516, 0.13617, 0.093117, 0.103594, 0.1, ... ], 1 nil
13 :"pNA.nkill.us"  double    46 [0.379416, 0.682979, 0.880567, 0.911205, 0.841379, ... ], 1 nil
14 :"pNA.nwound"    double    46 [0.079877, 0.308511, 0.668016, 0.484144, 0.394828, ... ], 1 nil
15 :"pNA.nwound.us" double    46 [0.380952, 0.682979, 0.88664, 0.911205, 0.856897, ... ], 1 nil
16 :worldPopulation double    46 [3682487.691, 3757734.668, 3833594.894, 3909722.12, 3985733.775, ... ]
17 :USpopulation    double    46 [209485.807, 211357.912, 213219.515, 215092.9, 217001.865, ... ]
18 :worldDeathRate  double    46 [11.966, 11.731, 11.635, 11.392, 11.285, ... ]
19 :USdeathRate     double    15 [9.5, 9.3, 9.4, 9.3, 9.1, ... ]
20 :worldDeaths     double    46 [44064647.710506, 44081985.390308, 44603876.59169, 44539554.39104, 44979005.650875, ... ]
 ... 5 more Vectors ...
Rdatasets: Ecdat: USclassifiedDocuments, Official Secrecy of the United States Government
RedAmber::DataFrame : 29 x 5 Vectors
Vectors : 5 numeric
# key                 type   level data_preview
1 :year               uint16    29 [1980, 1982, 1984, 1986, 1988, ... ]
2 :OCAuthorities      uint16    19 [7149, 6943, 6900, 6756, 6654, ... ], 11 nils
3 :OCActivity         uint32    25 [nil, nil, nil, nil, nil, ... ], 5 nils
4 :TenYrDeclass       double    15 [nil, nil, nil, nil, nil, ... ], 12 nils
5 :DerivClassActivity uint32    18 [nil, nil, nil, nil, nil, ... ], 12 nils
Rdatasets: Ecdat: USGDPpresidents, US GDP per capita with presidents and wars
RedAmber::DataFrame : 262 x 12 Vectors
Vectors : 9 numeric, 3 strings
#  key               type   level data_preview
1  :Year             uint16   262 [1610, 1620, 1630, 1640, 1650, ... ]
2  :CPI              double   180 [nil, nil, nil, nil, nil, ... ], 17 nils
3  :GDPdeflator      double   201 [nil, nil, nil, nil, nil, ... ], 33 nils
4  :"population.K"   double   248 [0.35, 2.302, 4.646, 26.634, 50.368, ... ], 15 nils
5  :realGDPperCapita double   230 [nil, nil, nil, nil, nil, ... ], 33 nils
6  :executive        string    54 ["JamesI", "JamesI", "CharlesI", "CharlesI", "Cromwell", ... ]
7  :war              string    11 ["", "", "", "", "", ... ]
8  :battleDeaths     double    46 [nil, nil, nil, nil, nil, ... ], 17 nils
9  :battleDeathsPMP  double    49 [nil, nil, nil, nil, nil, ... ], 32 nils
10 :Keynes           uint8      2 {0=>221, 1=>41}
11 :unemployment     double   102 [nil, nil, nil, nil, nil, ... ], 43 nils
12 :unempSource      string     5 {nil=>43, "Lebergott"=>90, "Romer"=>41, "Coen"=>9, "BLS"=>79}
Rdatasets: Ecdat: UStaxWords, Number of Words in US Tax Law
RedAmber::DataFrame : 7 x 10 Vectors
Vectors : 10 numeric
#  key                   type   level data_preview
1  :year                 uint16     7 [1955, 1965, 1975, 1985, 1995, ... ]
2  :IncomeTaxCode        uint16     7 [172, 243, 395, 776, 1060, ... ], 1 nil
3  :otherTaxCode         uint16     7 [237, 305, 363, 556, 731, ... ], 1 nil
4  :EntireTaxCode        uint16     7 [409, 548, 758, 1332, 1791, ... ], 1 nil
5  :IncomeTaxRegulations uint16     7 [547, 1638, 2456, 3594, 4663, ... ], 1 nil
6  :otherTaxRegulations  uint16     7 [440, 565, 692, 813, 1198, ... ], 1 nil
7  :EntireTaxRegulations uint16     7 [987, 2203, 3148, 4407, 5861, ... ], 1 nil
8  :IncomeTaxCodeAndRegs uint16     7 [718, 1881, 2851, 4369, 5722, ... ], 1 nil
9  :otherTaxCodeAndRegs  uint16     7 [678, 870, 1055, 1370, 1930, ... ], 1 nil
10 :EntireTaxCodeAndRegs uint16     7 [1396, 2751, 3906, 5739, 7652, ... ]
Rdatasets: fpp2: melsyd, Total weekly air passenger numbers on Ansett airline flights between Melbourne and Sydney, 1987-1992.
RedAmber::DataFrame : 283 x 3 Vectors
Vectors : 3 numeric
# key               type   level data_preview
1 :"First.Class"    double   242 [1.912, 1.848, 1.856, 2.142, 2.118, ... ], 1 nil
2 :"Business.Class" double   166 [nil, nil, nil, nil, nil, ... ], 107 nils
3 :"Economy.Class"  double   277 [20.167, 20.161, 19.993, 20.986, 20.497, ... ], 1 nil
Rdatasets: gap: meyer, Internal functions for gap
RedAmber::DataFrame : 306 x 5 Vectors
Vectors : 5 numeric
# key         type   level data_preview
1 :animal     uint16   306 [1, 2, 3, 4, 5, ... ]
2 :sire       uint8     13 [nil, nil, nil, nil, nil, ... ], 24 nils
3 :dam        uint8     37 [nil, nil, nil, nil, nil, ... ], 24 nils
4 :generation uint8      2 {1=>162, 2=>144}
5 :y          uint16    61 [nil, nil, nil, nil, nil, ... ], 24 nils
Rdatasets: gap: mr, Internal functions for gap
RedAmber::DataFrame : 9 x 7 Vectors
Vectors : 6 numeric, 1 string
# key         type   level data_preview
1 :SNP        string     9 ["rs188743906", "rs2289779", "rs117804300", "rs7033492", "rs10793962", ... ]
2 :"b.LIF.R"  double     9 [0.6804, -0.0788, -0.2281, -0.0968, 0.2098, ... ]
3 :"SE.LIF.R" double     9 [0.1104, 0.0134, 0.039, 0.0147, 0.0212, ... ]
4 :"b.FEV1"   double     9 [0.00177, 0.00104, -0.00392, -0.00585, 0.00378, ... ]
5 :"SE.FEV1"  double     9 [0.0166, 0.00261, 0.00855, 0.00269, 0.00536, ... ]
6 :"b.CAD"    double     9 [nil, -0.007543, 0.109372, 0.022793, -0.014567, ... ], 1 nil
7 :"SE.CAD"   double     9 [nil, 0.0092258, 0.0362219, 0.0119903, 0.0138196, ... ], 1 nil
Rdatasets: gap: PD, Internal functions for gap
RedAmber::DataFrame : 825 x 22 Vectors
Vectors : 6 numeric, 16 strings
#  key         type   level data_preview
1  :lab        string   825 ["002-001", "008-015", "019-000", "030-001", "038-000", ... ]
2  :apoe       string     5 {""=>396, "3/4"=>79, "3/3"=>299, "2/3"=>50, "4/4"=>1}
3  :rs10506151 string     4 {"2/2"=>537, ""=>70, "1/1"=>18, "1/2"=>200}
4  :rs10784486 string     4 {"1/2"=>350, "2/2"=>317, ""=>70, "1/1"=>88}
5  :rs1365763  string     4 {"2/2"=>536, ""=>68, "1/2"=>199, "1/1"=>22}
6  :rs1388598  string     4 {"2/2"=>688, ""=>75, "1/2"=>59, "1/1"=>3}
7  :rs1491938  string     4 {"1/2"=>356, ""=>72, "1/1"=>141, "2/2"=>256}
8  :rs1491941  string     4 {"1/2"=>319, "2/2"=>364, ""=>70, "1/1"=>72}
9  :m770       string     4 {""=>69, "1/1"=>79, "2/2"=>374, "1/2"=>303}
10 :int4       string     4 {""=>78, "1/2"=>383, "2/2"=>178, "1/1"=>186}
11 :snca       string     8 ["", "", "", "", "", ... ]
12 :abc        string     3 {"Control"=>235, "PD+"=>230, "PD-"=>360}
13 :diag       string     3 {""=>782, "PRO"=>40, "POS"=>3}
14 :sex        string     2 {"F"=>390, "M"=>435}
15 :race       string     3 {""=>787, "AI"=>20, "B"=>18}
16 :aon        uint8     62 [nil, nil, nil, nil, nil, ... ], 261 nils
17 :comments   string    11 ["", "", "", "", "", ... ]
18 :pd         uint8      2 {0=>235, 1=>590}
19 :apoe234    int8       4 {nil=>396, 1=>80, 0=>299, -1=>50}
20 :apoe2      uint8      3 {nil=>396, 0=>379, 1=>50}
 ... 2 more Vectors ...
Rdatasets: geepack: dietox, Growth curves of pigs in a 3x3 factorial experiment
RedAmber::DataFrame : 861 x 8 Vectors
Vectors : 6 numeric, 2 strings
# key     type   level data_preview
1 :Pig    uint16    72 [4601, 4601, 4601, 4601, 4601, ... ]
2 :Evit   string     3 {"Evit000"=>276, "Evit200"=>299, "Evit100"=>286}
3 :Cu     string     3 {"Cu000"=>274, "Cu035"=>300, "Cu175"=>287}
4 :Litter uint8     21 [1, 1, 1, 1, 1, ... ]
5 :Start  double    54 [26.5, 26.5, 26.5, 26.5, 26.5, ... ]
6 :Weight double   545 [26.5, 27.59999, 36.5, 40.29999, 49.09998, ... ]
7 :Feed   double   606 [nil, 5.200005, 17.6, 28.5, 45.200001, ... ], 72 nils
8 :Time   uint8     12 [1, 2, 3, 4, 5, ... ]
Rdatasets: geepack: muscatine, Data on Obesity from the Muscatine Coronary Risk Factor Study.
RedAmber::DataFrame : 14568 x 7 Vectors
Vectors : 5 numeric, 2 strings
# key       type   level data_preview
1 :id       uint16  4856 [1, 1, 1, 2, 2, ... ]
2 :gender   string     2 {"M"=>7458, "F"=>7110}
3 :base_age uint8      5 {6=>2805, 8=>3042, 10=>3075, 12=>2811, 14=>2835}
4 :age      uint8      7 [6, 8, 10, 6, 8, ... ]
5 :occasion uint8      3 {1=>4856, 2=>4856, 3=>4856}
6 :obese    string     3 {"yes"=>2112, "no"=>7744, nil=>4712}
7 :numobese uint8      3 {1=>2112, 0=>7744, nil=>4712}
Rdatasets: ggplot2: msleep, An updated and expanded version of the mammals sleep dataset
RedAmber::DataFrame : 83 x 11 Vectors
Vectors : 6 numeric, 5 strings
#  key           type   level data_preview
1  :name         string    83 ["Cheetah", "Owl monkey", "Mountain beaver", "Greater short-tailed shrew", "Cow", ... ]
2  :genus        string    77 ["Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bos", ... ]
3  :vore         string     5 {"carni"=>19, "omni"=>20, "herbi"=>32, nil=>7, "insecti"=>5}
4  :order        string    19 ["Carnivora", "Primates", "Rodentia", "Soricomorpha", "Artiodactyla", ... ]
5  :conservation string     7 ["lc", nil, "nt", "lc", "domesticated", ... ], 29 nils
6  :sleep_total  double    65 [12.1, 17.0, 14.4, 14.9, 4.0, ... ]
7  :sleep_rem    double    33 [nil, 1.8, 2.4, 2.3, 0.7, ... ], 22 nils
8  :sleep_cycle  double    23 [nil, nil, nil, 0.133333333, 0.666666667, ... ], 51 nils
9  :awake        double    65 [11.9, 7.0, 9.6, 9.1, 20.0, ... ]
10 :brainwt      double    54 [nil, 0.0155, nil, 0.00029, 0.423, ... ], 27 nils
11 :bodywt       double    82 [50.0, 0.48, 1.35, 0.019, 600.0, ... ]
Rdatasets: ggplot2: txhousing, Housing sales in TX
RedAmber::DataFrame : 8602 x 9 Vectors
Vectors : 8 numeric, 1 string
# key        type   level data_preview
1 :city      string    46 ["Abilene", "Abilene", "Abilene", "Abilene", "Abilene", ... ]
2 :year      uint16    16 [2000, 2000, 2000, 2000, 2000, ... ]
3 :month     uint8     12 [1, 2, 3, 4, 5, ... ]
4 :sales     uint16  1712 [72, 98, 130, 98, 141, ... ], 568 nils
5 :volume    double  7495 [5380000.0, 6505000.0, 9285000.0, 9730000.0, 10590000.0, ... ], 568 nils
6 :median    double  1538 [71400.0, 58700.0, 58100.0, 68600.0, 67300.0, ... ], 616 nils
7 :listings  uint16  3703 [701, 746, 784, 785, 794, ... ], 1424 nils
8 :inventory double   296 [6.3, 6.6, 6.8, 6.9, 6.8, ... ], 1467 nils
9 :date      double   187 [2000.0, 2000.08333333333, 2000.16666666667, 2000.25, 2000.33333333333, ... ]
Rdatasets: gt: countrypops, Yearly populations of countries from 1960 to 2017
RedAmber::DataFrame : 12470 x 5 Vectors
Vectors : 2 numeric, 3 strings
# key             type   level data_preview
1 :country_name   string   215 ["Aruba", "Aruba", "Aruba", "Aruba", "Aruba", ... ]
2 :country_code_2 string   215 ["AW", "AW", "AW", "AW", "AW", ... ], 58 nils
3 :country_code_3 string   215 ["ABW", "ABW", "ABW", "ABW", "ABW", ... ]
4 :year           uint16    58 [1960, 1961, 1962, 1963, 1964, ... ]
5 :population     uint32 12322 [54211, 55438, 56225, 56695, 57032, ... ], 107 nils
Rdatasets: gt: exibble, A toy example tibble for testing with gt: exibble
RedAmber::DataFrame : 8 x 9 Vectors
Vectors : 2 numeric, 6 strings, 1 temporal
# key       type   level data_preview
1 :num      double     8 [0.1111, 2.222, 33.33, 444.4, 5550.0, ... ], 1 nil
2 :char     string     8 ["apricot", "banana", "coconut", "durian", nil, ... ], 1 nil
3 :fctr     string     8 ["one", "two", "three", "four", "five", ... ]
4 :date     date64     8 [#<DateTime: 2015-01-15T09:00:00+09:00 ((2457038j,0s,0n),+32400s,2299161j)>, #<DateTime: 2015-02-15T09:00:00+09:00 ((2457069j,0s,0n),+32400s,2299161j)>, ... ]
5 :time     string     8 ["13:35", "14:40", "15:45", "16:50", "17:55", ... ], 1 nil
6 :datetime string     8 ["2018-01-01 02:22", "2018-02-02 14:33", "2018-03-03 03:44", "2018-04-04 15:55", "2018-05-05 04:00", ... ], 1 nil
7 :currency double     8 [49.95, 17.95, 1.39, 65100.0, 1325.81, ... ], 1 nil
8 :row      string     8 ["row_1", "row_2", "row_3", "row_4", "row_5", ... ]
9 :group    string     2 {"grp_a"=>4, "grp_b"=>4}
Rdatasets: gt: sza, Twice hourly solar zenith angles by month & latitude
RedAmber::DataFrame : 816 x 4 Vectors
Vectors : 3 numeric, 1 string
# key       type   level data_preview
1 :latitude uint8      4 {20=>204, 30=>204, 40=>204, 50=>204}
2 :month    string    12 ["jan", "jan", "jan", "jan", "jan", ... ]
3 :tst      double    17 [256.0, 280.0, 320.0, 344.0, 384.0, ... ]
4 :sza      double   414 [nil, nil, nil, nil, nil, ... ], 215 nils
Rdatasets: HistData: Cavendish, Cavendish's Determinations of the Density of the Earth
RedAmber::DataFrame : 29 x 3 Vectors
Vectors : 3 numeric
# key       type   level data_preview
1 :density  double    27 [5.5, 5.61, 4.88, 5.07, 5.26, ... ]
2 :density2 double    27 [5.5, 5.61, 5.88, 5.07, 5.26, ... ]
3 :density3 double    22 [nil, nil, nil, nil, nil, ... ], 6 nils
Rdatasets: HistData: Fingerprints, Waite's data on Patterns in Fingerprints
RedAmber::DataFrame : 36 x 3 Vectors
Vectors : 3 numeric
# key     type  level data_preview
1 :Whorls uint8     6 [0, 1, 2, 3, 4, ... ]
2 :Loops  uint8     6 [0, 0, 0, 0, 0, ... ]
3 :count  uint8    22 [78, 106, 130, 125, 104, ... ], 15 nils
Rdatasets: HistData: OldMaps, Latitudes and Longitudes of 39 Points in 11 Old Maps
RedAmber::DataFrame : 468 x 6 Vectors
Vectors : 5 numeric, 1 string
# key    type   level data_preview
1 :point uint8     39 [1, 1, 1, 1, 1, ... ]
2 :col   uint8     12 [1, 2, 3, 4, 5, ... ]
3 :name  string    11 ["Actual", "Coronelli", "Del'Isle", "Popple", "Belin", ... ]
4 :year  uint16    10 [nil, 1688, 1703, 1733, 1744, ... ], 39 nils
5 :lat   double   281 [41.68, 41.62, -41.12, -41.03, 41.28, ... ]
6 :long  double   350 [82.85, 87.67, -83.03, -85.1, 82.42, ... ]
Rdatasets: HistData: Snow.dates, John Snow's Map and Data on the 1854 London Cholera Outbreak
RedAmber::DataFrame : 44 x 3 Vectors
Vectors : 2 numeric, 1 temporal
# key      type   level data_preview
1 :date    date64    44 [#<DateTime: 1854-08-19T09:00:00+09:00 ((2398450j,0s,0n),+32400s,2299161j)>, #<DateTime: 1854-08-20T09:00:00+09:00 ((2398451j,0s,0n),+32400s,2299161j)>, ... ]
2 :attacks uint8     18 [1, 1, 1, 0, 1, ... ]
3 :deaths  uint8     19 [1, 0, 2, 0, 0, ... ]
Rdatasets: HistData: Virginis, John F. W. Herschel's Data on the Orbit of the Twin Stars gamma _Virginis_
RedAmber::DataFrame : 18 x 6 Vectors
Vectors : 4 numeric, 2 strings
# key        type   level data_preview
1 :year      double    18 [1718.19, 1718.2, 1720.31, 1756.0, 1780.06, ... ]
2 :posangle  double    14 [160.8666667, 160.8666667, 139.1166667, 144.3666667, nil, ... ], 4 nils
3 :distance  double    10 [nil, nil, 7.49, 6.5, 5.7, ... ], 9 nils
4 :weight    double     6 [4.0, 4.0, 0.1, 4.0, 4.0, ... ]
5 :notes     string    15 ["Pound", "Bradley", "Cassini  very uncertain", "Mayer", "H. Catal. 1782", ... ]
6 :authority string     9 ["Pound", "Bradley", "Cassini", "Mayer", "H", ... ]
Rdatasets: HSAUR: BtheB, Beat the Blues Data
RedAmber::DataFrame : 100 x 8 Vectors
Vectors : 5 numeric, 3 strings
# key        type   level data_preview
1 :drug      string     2 {"No"=>56, "Yes"=>44}
2 :length    string     2 {">6m"=>51, "<6m"=>49}
3 :treatment string     2 {"TAU"=>48, "BtheB"=>52}
4 :"bdi.pre" uint8     40 [29, 32, 25, 21, 26, ... ]
5 :"bdi.2m"  uint8     38 [2, 16, 20, 17, 23, ... ], 3 nils
6 :"bdi.4m"  uint8     34 [2, 24, nil, 16, nil, ... ], 27 nils
7 :"bdi.6m"  uint8     34 [nil, 17, nil, 10, nil, ... ], 42 nils
8 :"bdi.8m"  uint8     25 [nil, 20, nil, 9, nil, ... ], 48 nils
Rdatasets: ISLR: Hitters, Baseball Data
RedAmber::DataFrame : 322 x 20 Vectors
Vectors : 17 numeric, 3 strings
#  key        type   level data_preview
1  :AtBat     uint16   247 [293, 315, 479, 496, 321, ... ]
2  :Hits      uint8    144 [66, 81, 130, 141, 87, ... ]
3  :HmRun     uint8     36 [1, 7, 18, 20, 10, ... ]
4  :Runs      uint8     96 [30, 24, 66, 65, 39, ... ]
5  :RBI       uint8    103 [29, 38, 72, 78, 42, ... ]
6  :Walks     uint8     89 [14, 39, 76, 37, 30, ... ]
7  :Years     uint8     22 [1, 14, 3, 11, 2, ... ]
8  :CAtBat    uint16   314 [293, 3449, 1624, 5628, 396, ... ]
9  :CHits     uint16   288 [66, 835, 457, 1575, 101, ... ]
10 :CHmRun    uint16   146 [1, 69, 63, 225, 12, ... ]
11 :CRuns     uint16   261 [30, 321, 224, 828, 48, ... ]
12 :CRBI      uint16   262 [29, 414, 266, 838, 46, ... ]
13 :CWalks    uint16   248 [14, 375, 263, 354, 33, ... ]
14 :League    string     2 {"A"=>175, "N"=>147}
15 :Division  string     2 {"E"=>157, "W"=>165}
16 :PutOuts   uint16   232 [446, 632, 880, 200, 805, ... ]
17 :Assists   uint16   161 [33, 43, 82, 11, 40, ... ]
18 :Errors    uint8     29 [20, 10, 14, 3, 4, ... ]
19 :Salary    double   151 [nil, 475.0, 480.0, 500.0, 91.5, ... ], 59 nils
20 :NewLeague string     2 {"A"=>176, "N"=>146}
Rdatasets: KMsurv: bcdeter, data from Section 1.18
RedAmber::DataFrame : 95 x 3 Vectors
Vectors : 3 numeric
# key    type  level data_preview
1 :lower uint8    37 [0, 0, 0, 4, 5, ... ]
2 :upper uint8    35 [5, 7, 8, 11, 11, ... ], 37 nils
3 :treat uint8     2 {1=>46, 2=>49}
Rdatasets: lmec: UTIdata, Data set for Unstructured Treatment Interruption Study
RedAmber::DataFrame : 373 x 5 Vectors
Vectors : 4 numeric, 1 string
# key              type   level data_preview
1 :Patid           string    72 ["C1", "C1", "C1", "C1", "C1", ... ]
2 :"Days.after.TI" int16    237 [-96, 69, 73, 149, 231, ... ]
3 :Fup             uint8      8 [0, 12, 1, 3, 6, ... ]
4 :RNA             uint32   313 [14920, 21758, 17535, 12409, 7140, ... ], 11 nils
5 :RNAcens         uint8      3 {0=>340, 2=>7, 1=>26}
Rdatasets: MASS: biopsy, Biopsy Data on Breast Cancer Patients
RedAmber::DataFrame : 699 x 11 Vectors
Vectors : 10 numeric, 1 string
#  key    type   level data_preview
1  :ID    uint32   645 [1000025, 1002945, 1015425, 1016277, 1017023, ... ]
2  :V1    uint8     10 [5, 5, 3, 6, 4, ... ]
3  :V2    uint8     10 [1, 4, 1, 8, 1, ... ]
4  :V3    uint8     10 [1, 4, 1, 8, 1, ... ]
5  :V4    uint8     10 [1, 5, 1, 1, 3, ... ]
6  :V5    uint8     10 [2, 7, 2, 3, 2, ... ]
7  :V6    uint8     11 [1, 10, 2, 4, 1, ... ], 16 nils
8  :V7    uint8     10 [3, 3, 3, 3, 3, ... ]
9  :V8    uint8     10 [1, 2, 1, 7, 1, ... ]
10 :V9    uint8      9 [1, 1, 1, 1, 1, ... ]
11 :class string     2 {"benign"=>458, "malignant"=>241}
Rdatasets: MASS: Pima.tr2, Diabetes in Pima Indian Women
RedAmber::DataFrame : 300 x 8 Vectors
Vectors : 7 numeric, 1 string
# key    type   level data_preview
1 :npreg uint8     15 [5, 7, 5, 0, 0, ... ]
2 :glu   uint8    108 [86, 195, 77, 165, 107, ... ]
3 :bp    uint8     39 [68, 70, 82, 76, 60, ... ], 13 nils
4 :skin  uint8     46 [28, 33, 41, 43, 25, ... ], 98 nils
5 :bmi   double   158 [30.2, 25.1, 35.8, 47.9, 26.4, ... ], 3 nils
6 :ped   double   249 [0.364, 0.163, 0.156, 0.259, 0.133, ... ]
7 :age   uint8     44 [24, 55, 35, 26, 23, ... ]
8 :type  string     2 {"No"=>194, "Yes"=>106}
Rdatasets: MASS: survey, Student Survey Data
RedAmber::DataFrame : 237 x 12 Vectors
Vectors : 5 numeric, 7 strings
#  key       type   level data_preview
1  :Sex      string     3 {"Female"=>118, "Male"=>118, nil=>1}
2  :"Wr.Hnd" double    61 [18.5, 19.5, 18.0, 18.8, 20.0, ... ], 1 nil
3  :"NW.Hnd" double    69 [18.0, 20.5, 13.3, 18.9, 20.0, ... ], 1 nil
4  :"W.Hnd"  string     3 {"Right"=>218, "Left"=>18, nil=>1}
5  :Fold     string     3 {"R on L"=>120, "L on R"=>99, "Neither"=>18}
6  :Pulse    uint8     44 [92, 104, 87, nil, 35, ... ], 45 nils
7  :Clap     string     4 {"Left"=>39, "Neither"=>50, "Right"=>147, nil=>1}
8  :Exer     string     3 {"Some"=>98, "None"=>24, "Freq"=>115}
9  :Smoke    string     5 {"Never"=>189, "Regul"=>17, "Occas"=>19, "Heavy"=>11, nil=>1}
10 :Height   double    68 [173.0, 177.8, nil, 160.0, 165.0, ... ], 28 nils
11 :"M.I"    string     3 {"Metric"=>141, "Imperial"=>68, nil=>28}
12 :Age      double    88 [18.25, 17.583, 16.917, 20.333, 23.667, ... ]
Rdatasets: mi: CHAIN, Subset of variables from the CHAIN project
RedAmber::DataFrame : 532 x 7 Vectors
Vectors : 7 numeric
# key        type   level data_preview
1 :log_virus double    97 [9.996476859, 0.0, nil, nil, 7.090076836, ... ], 179 nils
2 :age       uint8     48 [29, 38, 47, 53, 42, ... ], 24 nils
3 :income    uint8     11 [5, 5, 6, 2, 2, ... ], 38 nils
4 :healthy   double   493 [34.18271255, 58.09812546, 21.87600327, 18.67593765, 54.09996414, ... ], 24 nils
5 :mental    uint8      3 {1=>138, 0=>370, nil=>24}
6 :damage    uint8      6 [4, 5, 1, 5, 4, ... ], 63 nils
7 :treatment uint8      4 {1=>117, 2=>160, 0=>231, nil=>24}
Rdatasets: mi: nlsyV, National Longitudinal Survey of Youth Extract
RedAmber::DataFrame : 400 x 7 Vectors
Vectors : 7 numeric
# key         type   level data_preview
1 :"ppvtr.36" uint8     77 [105, 91, 89, 85, 66, ... ], 75 nils
2 :first      uint8      2 {1=>174, 0=>226}
3 :"b.marr"   uint8      3 {1=>274, 0=>114, nil=>12}
4 :income     uint32   261 [21446, 12125, 13560, 24500, 3304, ... ], 82 nils
5 :momage     uint8     17 [20, 22, 22, 28, 20, ... ]
6 :momed      uint8      5 {2=>135, 3=>81, 1=>118, 4=>26, nil=>40}
7 :momrace    uint8      4 {3=>148, 1=>55, nil=>117, 2=>80}
Rdatasets: mosaicData: Gestation, Data from the Child Health and Development Studies
RedAmber::DataFrame : 1236 x 23 Vectors
Vectors : 10 numeric, 12 strings, 1 temporal
#  key        type   level data_preview
1  :id        uint16  1236 [15, 20, 58, 61, 72, ... ]
2  :pluralty  string     1 {"single fetus"=>1236}
3  :outcome   string     1 {"live birth"=>1236}
4  :date      date64   358 [#<DateTime: 1964-11-11T09:00:00+09:00 ((2438711j,0s,0n),+32400s,2299161j)>, #<DateTime: 1965-02-07T09:00:00+09:00 ((2438799j,0s,0n),+32400s,2299161j)>, ... ]
5  :gestation uint16   107 [284, 282, 279, nil, 282, ... ], 13 nils
6  :sex       string     1 {"male"=>1236}
7  :wt        uint8    107 [120, 113, 128, 123, 108, ... ]
8  :parity    uint8     13 [1, 2, 1, 2, 1, ... ]
9  :race      string     6 ["asian", "white", "white", "white", "white", ... ], 13 nils
10 :age       uint8     31 [27, 33, 28, 36, 23, ... ], 2 nils
11 :ed        string     8 ["College graduate", "College graduate", "HS graduate--no other schooling", "College graduate", "College graduate", ... ], 1 nil
12 :ht        uint8     20 [62, 64, 64, 69, 67, ... ], 22 nils
13 :"wt.1"    uint8    106 [100, 135, 115, 190, 125, ... ], 36 nils
14 :drace     string     5 {"asian"=>39, "white"=>860, "black"=>250, nil=>46, "mex"=>41}
15 :dage      uint8     42 [31, 38, 32, 43, 24, ... ], 7 nils
16 :ded       string     8 ["College graduate", "College graduate", "8th -12th grade - did not graduate", "HS+some college", "College graduate", ... ], 13 nils
17 :dht       uint8     20 [65, 70, nil, 68, nil, ... ], 492 nils
18 :dwt       uint16    86 [110, 148, nil, 197, nil, ... ], 499 nils
19 :marital   string     5 {"married"=>1208, nil=>2, "legally separated"=>15, "never married"=>6, "divorced"=>5}
20 :inc       string    11 ["2500-5000", "10000-12500", "5000-7500", "20000-22500", "2500-5000", ... ], 124 nils
 ... 3 more Vectors ...
Rdatasets: mosaicData: HELPmiss, Health Evaluation and Linkage to Primary Care
RedAmber::DataFrame : 470 x 28 Vectors
Vectors : 19 numeric, 9 strings
#  key               type   level data_preview
1  :age              uint8     43 [37, 37, 26, 39, 32, ... ]
2  :anysub           string     3 {"yes"=>196, nil=>216, "no"=>58}
3  :cesd             uint8     58 [49, 30, 39, 15, 39, ... ]
4  :d1               uint8     22 [3, 22, 0, 2, 12, ... ]
5  :daysanysub       uint16   117 [177, 2, 3, 189, 2, ... ], 218 nils
6  :dayslink         uint16   183 [225, nil, 365, 343, 57, ... ], 23 nils
7  :drugrisk         uint8     22 [0, 0, 20, 0, 0, ... ], 2 nils
8  :e2b              uint8     13 [nil, nil, nil, 1, 1, ... ], 248 nils
9  :female           uint8      2 {0=>359, 1=>111}
10 :sex              string     2 {"male"=>359, "female"=>111}
11 :g1b              string     2 {"yes"=>134, "no"=>336}
12 :homeless         string     2 {"housed"=>251, "homeless"=>219}
13 :i1               uint8     65 [13, 56, 0, 5, 10, ... ]
14 :i2               uint8     87 [26, 62, 0, 5, 13, ... ]
15 :id               uint16   470 [1, 2, 3, 4, 5, ... ]
16 :indtot           uint8     39 [39, 43, 41, 28, 38, ... ], 14 nils
17 :link             string     3 {"yes"=>167, nil=>23, "no"=>280}
18 :mcs              double   469 [25.1119899749756, 26.6703071594238, 6.76292324066162, 43.9678802490234, 21.6757545471191, ... ], 2 nils
19 :pcs              double   469 [58.413688659668, 36.0369415283203, 74.8063278198242, 61.9316787719727, 37.3455848693848, ... ], 2 nils
20 :pss_fr           uint8     15 [0, 1, 13, 11, 10, ... ]
 ... 8 more Vectors ...
Rdatasets: mosaicData: HELPrct, Health Evaluation and Linkage to Primary Care
RedAmber::DataFrame : 453 x 30 Vectors
Vectors : 21 numeric, 9 strings
#  key               type   level data_preview
1  :age              uint8     42 [37, 37, 26, 39, 32, ... ]
2  :anysubstatus     uint8      3 {1=>190, nil=>207, 0=>56}
3  :anysub           string     3 {"yes"=>190, nil=>207, "no"=>56}
4  :cesd             uint8     58 [49, 30, 39, 15, 39, ... ]
5  :d1               uint8     21 [3, 22, 0, 2, 12, ... ]
6  :daysanysub       uint16   114 [177, 2, 3, 189, 2, ... ], 209 nils
7  :dayslink         uint16   181 [225, nil, 365, 343, 57, ... ], 22 nils
8  :drugrisk         uint8     22 [0, 0, 20, 0, 0, ... ], 1 nil
9  :e2b              uint8     13 [nil, nil, nil, 1, 1, ... ], 239 nils
10 :female           uint8      2 {0=>346, 1=>107}
11 :sex              string     2 {"male"=>346, "female"=>107}
12 :g1b              string     2 {"yes"=>127, "no"=>326}
13 :homeless         string     2 {"housed"=>244, "homeless"=>209}
14 :i1               uint8     63 [13, 56, 0, 5, 10, ... ]
15 :i2               uint8     85 [26, 62, 0, 5, 13, ... ]
16 :id               uint16   453 [1, 2, 3, 4, 5, ... ]
17 :indtot           uint8     38 [39, 43, 41, 28, 38, ... ]
18 :linkstatus       uint8      3 {1=>163, nil=>22, 0=>268}
19 :link             string     3 {"yes"=>163, nil=>22, "no"=>268}
20 :mcs              double   453 [25.1119899749756, 26.6703071594238, 6.76292324066162, 43.9678802490234, 21.6757545471191, ... ]
 ... 10 more Vectors ...
Rdatasets: mosaicData: Marriage, Marriage records
RedAmber::DataFrame : 98 x 15 Vectors
Vectors : 6 numeric, 6 strings, 3 temporal
#  key            type   level data_preview
1  :bookpageID    string    49 ["B230p539", "B230p677", "B230p766", "B230p892", "B230p994", ... ]
2  :appdate       date64    49 [#<DateTime: 1996-10-29T09:00:00+09:00 ((2450386j,0s,0n),+32400s,2299161j)>, #<DateTime: 1996-11-12T09:00:00+09:00 ((2450400j,0s,0n),+32400s,2299161j)>, ... ]
3  :ceremonydate  date64    49 [#<DateTime: 1996-11-09T09:00:00+09:00 ((2450397j,0s,0n),+32400s,2299161j)>, #<DateTime: 1996-11-12T09:00:00+09:00 ((2450400j,0s,0n),+32400s,2299161j)>, ... ]
4  :delay         uint8     16 [11, 0, 8, 5, 5, ... ]
5  :officialTitle string     9 ["CIRCUIT JUDGE ", "MARRIAGE OFFICIAL", "MARRIAGE OFFICIAL", "MINISTER", "MINISTER", ... ]
6  :person        string     2 {"Groom"=>49, "Bride"=>49}
7  :dob           date64    98 [#<DateTime: 2064-04-11T09:00:00+09:00 ((2475022j,0s,0n),+32400s,2299161j)>, #<DateTime: 2064-08-06T09:00:00+09:00 ((2475139j,0s,0n),+32400s,2299161j)>, ... ]
8  :age           double    97 [32.60273973, 32.29041096, 34.79178082, 40.57808219, 30.02191781, ... ]
9  :race          string     4 {"White"=>74, "Hispanic"=>1, "Black"=>22, "American Indian"=>1}
10 :prevcount     uint8      5 {0=>46, 1=>36, 3=>5, 2=>10, 5=>1}
11 :prevconc      string     3 {nil=>48, "Divorce"=>43, "Death"=>7}
12 :hs            uint8      5 {12=>83, 10=>5, 9=>4, 11=>5, 8=>1}
13 :college       uint8      9 [7, 0, 3, 4, 0, ... ], 10 nils
14 :dayOfBirth    uint16    88 [102, 219, 51, 141, 348, ... ]
15 :sign          string    12 ["Aries", "Leo", "Pisces", "Gemini", "Saggitarius", ... ]
Rdatasets: mosaicData: SnowGR, Snowfall data for Grand Rapids, MI
RedAmber::DataFrame : 119 x 15 Vectors
Vectors : 15 numeric
#  key          type   level data_preview
1  :SeasonStart uint16   119 [1893, 1894, 1895, 1896, 1897, ... ]
2  :SeasonEnd   uint16   119 [1894, 1895, 1896, 1897, 1898, ... ]
3  :Jul         uint8      1 {0=>119}
4  :Aug         uint8      1 {0=>119}
5  :Sep         uint8      1 {0=>119}
6  :Oct         double    19 [0.0, 0.0, 0.4, 0.2, 0.0, ... ]
7  :Nov         double    79 [8.0, 7.5, 23.2, 8.0, 1.4, ... ]
8  :Dec         double    98 [24.9, 5.3, 15.0, 8.0, 8.0, ... ]
9  :Jan         double    98 [12.5, 21.5, nil, 4.9, 15.5, ... ], 1 nil
10 :Feb         double    95 [6.8, 8.0, 8.5, 11.2, 29.5, ... ], 1 nil
11 :Mar         double    92 [4.8, 22.5, 2.0, 12.0, 0.0, ... ], 2 nils
12 :Apr         double    54 [2.0, 0.0, 0.0, 0.0, 0.0, ... ], 1 nil
13 :May         double    10 [0.0, 0.0, 0.0, 0.0, 0.0, ... ], 1 nil
14 :Jun         uint8      2 {0=>118, nil=>1}
15 :Total       double   109 [59.0, 64.8, 49.1, 44.3, 54.4, ... ], 1 nil
Rdatasets: mosaicData: Weather, Weather
RedAmber::DataFrame : 3655 x 25 Vectors
Vectors : 21 numeric, 3 strings, 1 temporal
#  key            type   level data_preview
1  :city          string     5 {"Auckland"=>731, "Mumbai"=>731, "Beijing"=>731, "Chicago"=>731, "San Diego"=>731}
2  :date          date64   731 [#<DateTime: 2016-01-01T09:00:00+09:00 ((2457389j,0s,0n),+32400s,2299161j)>, #<DateTime: 2016-01-02T09:00:00+09:00 ((2457390j,0s,0n),+32400s,2299161j)>, ... ]
3  :year          uint16     2 {2016=>1830, 2017=>1825}
4  :month         uint8     12 [1, 1, 1, 1, 1, ... ]
5  :day           uint8     31 [1, 2, 3, 4, 5, ... ]
6  :high_temp     uint8     92 [68, 68, 77, 73, 69, ... ]
7  :avg_temp      uint8     89 [65, 66, 72, 66, 62, ... ]
8  :low_temp      int8      90 [62, 64, 66, 60, 55, ... ]
9  :high_dewpt    int8      92 [64, 64, 70, 66, 55, ... ]
10 :avg_dewpt     int8      94 [60, 63, 67, 60, 52, ... ]
11 :low_dewpt     int8     102 [55, 61, 64, 54, 48, ... ]
12 :high_humidity uint8     72 [100, 100, 100, 100, 82, ... ]
13 :avg_humidity  uint8     87 [82, 94, 91, 76, 69, ... ]
14 :low_humidity  uint8     88 [68, 88, 74, 53, 56, ... ]
15 :high_hg       double   130 [30.15, 30.04, 29.8, 30.12, 30.21, ... ]
16 :avg_hg        double   137 [30.09, 29.9, 29.73, 29.9, 30.14, ... ]
17 :low_hg        double   133 [30.01, 29.8, 29.68, 29.77, 30.09, ... ]
18 :high_vis      uint8     19 [6, 6, 6, 6, 6, ... ]
19 :avg_vis       uint8     20 [6, 5, 6, 6, 6, ... ]
20 :low_vis       uint8     20 [4, 1, 1, 6, 6, ... ]
 ... 5 more Vectors ...
Rdatasets: multgee: arthritis, Rheumatoid Arthritis Clinical Trial
RedAmber::DataFrame : 906 x 7 Vectors
Vectors : 7 numeric
# key       type   level data_preview
1 :id       uint16   302 [1, 1, 1, 2, 2, ... ]
2 :y        uint8      6 [4, 5, 5, 4, 4, ... ], 18 nils
3 :sex      uint8      2 {2=>657, 1=>249}
4 :age      uint8     44 [54, 54, 54, 41, 41, ... ]
5 :trt      uint8      2 {2=>459, 1=>447}
6 :baseline uint8      5 {2=>219, 3=>417, 4=>168, 5=>33, 1=>69}
7 :time     uint8      3 {1=>302, 3=>302, 5=>302}
Rdatasets: multgee: housing, Homeless Data
RedAmber::DataFrame : 1448 x 4 Vectors
Vectors : 4 numeric
# key   type   level data_preview
1 :id   uint16   362 [1, 1, 1, 1, 2, ... ]
2 :y    uint8      4 {1=>484, 2=>511, 0=>294, nil=>159}
3 :time uint8      4 {0=>362, 6=>362, 12=>362, 24=>362}
4 :sec  uint8      2 {1=>724, 0=>724}
Rdatasets: nycflights13: flights, Flights data
RedAmber::DataFrame : 336776 x 19 Vectors
Vectors : 14 numeric, 4 strings, 1 temporal
#  key             type   level data_preview
1  :year           uint16     1 {2013=>336776}
2  :month          uint8     12 [1, 1, 1, 1, 1, ... ]
3  :day            uint8     31 [1, 1, 1, 1, 1, ... ]
4  :dep_time       uint16  1319 [517, 533, 542, 544, 554, ... ], 8255 nils
5  :sched_dep_time uint16  1021 [515, 529, 540, 545, 600, ... ]
6  :dep_delay      int16    528 [2, 4, 2, -1, -6, ... ], 8255 nils
7  :arr_time       uint16  1412 [830, 850, 923, 1004, 812, ... ], 8713 nils
8  :sched_arr_time uint16  1163 [819, 830, 850, 1022, 837, ... ]
9  :arr_delay      int16    578 [11, 20, 33, -18, -25, ... ], 9430 nils
10 :carrier        string    16 ["UA", "UA", "AA", "B6", "DL", ... ]
11 :flight         uint16  3844 [1545, 1714, 1141, 725, 461, ... ]
12 :tailnum        string  4044 ["N14228", "N24211", "N619AA", "N804JB", "N668DN", ... ], 2512 nils
13 :origin         string     3 {"EWR"=>120835, "LGA"=>104662, "JFK"=>111279}
14 :dest           string   105 ["IAH", "IAH", "MIA", "BQN", "ATL", ... ]
15 :air_time       uint16   510 [227, 227, 160, 183, 116, ... ], 9430 nils
16 :distance       uint16   214 [1400, 1416, 1089, 1576, 762, ... ]
17 :hour           uint8     20 [5, 5, 5, 5, 6, ... ]
18 :minute         uint8     60 [15, 29, 40, 45, 0, ... ]
19 :time_hour      date64  6936 [#<DateTime: 2013-01-01T14:00:00+09:00 ((2456294j,18000s,0n),+32400s,2299161j)>, #<DateTime: 2013-01-01T14:00:00+09:00 ((2456294j,18000s,0n),+32400s,2299161j)>, ... ]
Rdatasets: nycflights13: weather, Hourly weather data
RedAmber::DataFrame : 26115 x 15 Vectors
Vectors : 13 numeric, 1 string, 1 temporal
#  key         type   level data_preview
1  :origin     string     3 {"EWR"=>8703, "JFK"=>8706, "LGA"=>8706}
2  :year       uint16     1 {2013=>26115}
3  :month      uint8     12 [1, 1, 1, 1, 1, ... ]
4  :day        uint8     31 [1, 1, 1, 1, 1, ... ]
5  :hour       uint8     24 [1, 2, 3, 4, 5, ... ]
6  :temp       double   174 [39.02, 39.02, 39.02, 39.92, 39.02, ... ], 1 nil
7  :dewp       double   154 [26.06, 26.96, 28.04, 28.04, 28.04, ... ], 1 nil
8  :humid      double  2500 [59.37, 61.63, 64.43, 62.21, 64.43, ... ], 1 nil
9  :wind_dir   uint16    38 [270, 250, 240, 250, 260, ... ], 460 nils
10 :wind_speed double    37 [10.35702, 8.05546, 11.5078, 12.65858, 12.65858, ... ], 4 nils
11 :wind_gust  double    38 [nil, nil, nil, nil, nil, ... ], 20778 nils
12 :precip     double    59 [0.0, 0.0, 0.0, 0.0, 0.0, ... ]
13 :pressure   double   469 [1012.0, 1012.3, 1012.5, 1012.2, 1011.9, ... ], 2729 nils
14 :visib      double    20 [10.0, 10.0, 10.0, 10.0, 10.0, ... ]
15 :time_hour  date64  8713 [#<DateTime: 2013-01-01T10:00:00+09:00 ((2456294j,3600s,0n),+32400s,2299161j)>, #<DateTime: 2013-01-01T11:00:00+09:00 ((2456294j,7200s,0n),+32400s,2299161j)>, ... ]
Rdatasets: openintro: acs12, American Community Survey, 2012
RedAmber::DataFrame : 2000 x 13 Vectors
Vectors : 4 numeric, 9 strings
#  key           type   level data_preview
1  :income       uint32   267 [60000, 0, nil, 0, 0, ... ], 377 nils
2  :employment   string     4 {"not in labor force"=>656, nil=>395, "employed"=>843, "unemployed"=>106}
3  :hrs_work     uint8     56 [40, nil, nil, nil, nil, ... ], 1041 nils
4  :race         string     4 {"white"=>1555, "other"=>152, "asian"=>87, "black"=>206}
5  :age          uint8     95 [68, 88, 12, 17, 77, ... ]
6  :gender       string     2 {"female"=>969, "male"=>1031}
7  :citizen      string     2 {"yes"=>1882, "no"=>118}
8  :time_to_work uint8     45 [nil, nil, nil, nil, nil, ... ], 1217 nils
9  :lang         string     3 {"english"=>1527, "other"=>368, nil=>105}
10 :married      string     2 {"no"=>1167, "yes"=>833}
11 :edu          string     4 {"college"=>359, "hs or lower"=>1439, "grad"=>144, nil=>58}
12 :disability   string     2 {"no"=>1676, "yes"=>324}
13 :birth_qrtr   string     4 {"jul thru sep"=>504, "jan thru mar"=>485, "oct thru dec"=>532, "apr thru jun"=>479}
Rdatasets: openintro: ames, Housing prices in Ames, Iowa
RedAmber::DataFrame : 2930 x 82 Vectors
Vectors : 39 numeric, 43 strings
#  key                type   level data_preview
1  :Order             uint16  2930 [1, 2, 3, 4, 5, ... ]
2  :PID               uint32  2930 [526301100, 526350040, 526351010, 526353030, 527105010, ... ]
3  :area              uint16  1292 [1656, 896, 1329, 2110, 1629, ... ]
4  :price             uint32  1032 [215000, 105000, 172000, 244000, 189900, ... ]
5  :"MS.SubClass"     uint8     16 [20, 20, 20, 20, 60, ... ]
6  :"MS.Zoning"       string     7 ["RL", "RH", "RL", "RL", "RL", ... ]
7  :"Lot.Frontage"    uint16   129 [141, 80, 81, 93, 74, ... ], 490 nils
8  :"Lot.Area"        uint32  1960 [31770, 11622, 14267, 11160, 13830, ... ]
9  :Street            string     2 {"Pave"=>2918, "Grvl"=>12}
10 :Alley             string     3 {nil=>2732, "Pave"=>78, "Grvl"=>120}
11 :"Lot.Shape"       string     4 {"IR1"=>979, "Reg"=>1859, "IR2"=>76, "IR3"=>16}
12 :"Land.Contour"    string     4 {"Lvl"=>2633, "HLS"=>120, "Bnk"=>117, "Low"=>60}
13 :Utilities         string     3 {"AllPub"=>2927, "NoSewr"=>2, "NoSeWa"=>1}
14 :"Lot.Config"      string     5 {"Corner"=>511, "Inside"=>2140, "CulDSac"=>180, "FR2"=>85, "FR3"=>14}
15 :"Land.Slope"      string     3 {"Gtl"=>2789, "Mod"=>125, "Sev"=>16}
16 :Neighborhood      string    28 ["NAmes", "NAmes", "NAmes", "NAmes", "Gilbert", ... ]
17 :"Condition.1"     string     9 ["Norm", "Feedr", "Norm", "Norm", "Norm", ... ]
18 :"Condition.2"     string     8 ["Norm", "Norm", "Norm", "Norm", "Norm", ... ]
19 :"Bldg.Type"       string     5 {"1Fam"=>2425, "TwnhsE"=>233, "Twnhs"=>101, "Duplex"=>109, "2fmCon"=>62}
20 :"House.Style"     string     8 ["1Story", "1Story", "1Story", "1Story", "2Story", ... ]
 ... 62 more Vectors ...
Rdatasets: openintro: babies, The Child Health and Development Studies
RedAmber::DataFrame : 1236 x 8 Vectors
Vectors : 8 numeric
# key        type   level data_preview
1 :case      uint16  1236 [1, 2, 3, 4, 5, ... ]
2 :bwt       uint8    107 [120, 113, 128, 123, 108, ... ]
3 :gestation uint16   107 [284, 282, 279, nil, 282, ... ], 13 nils
4 :parity    uint8      2 {0=>921, 1=>315}
5 :age       uint8     31 [27, 33, 28, 36, 23, ... ], 2 nils
6 :height    uint8     20 [62, 64, 64, 69, 67, ... ], 22 nils
7 :weight    uint8    106 [100, 135, 115, 190, 125, ... ], 36 nils
8 :smoke     uint8      3 {0=>742, 1=>484, nil=>10}
Rdatasets: openintro: births, North Carolina births, 100 cases
RedAmber::DataFrame : 150 x 9 Vectors
Vectors : 6 numeric, 3 strings
# key        type   level data_preview
1 :f_age     uint8     30 [31, 34, 36, 41, 42, ... ], 31 nils
2 :m_age     uint8     27 [30, 36, 35, 40, 37, ... ]
3 :weeks     uint8     16 [39, 39, 40, 40, 40, ... ]
4 :premature string     2 {"full term"=>129, "premie"=>21}
5 :visits    uint8     19 [13, 5, 12, 13, nil, ... ], 1 nil
6 :gained    uint8     55 [1, 35, 29, 30, 10, ... ], 2 nils
7 :weight    double    68 [6.88, 7.69, 8.88, 9.0, 7.94, ... ]
8 :sex_baby  string     2 {"male"=>82, "female"=>68}
9 :smoke     string     2 {"smoker"=>50, "nonsmoker"=>100}
Rdatasets: openintro: births14, US births
RedAmber::DataFrame : 1000 x 13 Vectors
Vectors : 6 numeric, 7 strings
#  key             type   level data_preview
1  :fage           uint8     39 [34, 36, 37, nil, 32, ... ], 114 nils
2  :mage           uint8     31 [34, 31, 36, 16, 31, ... ]
3  :mature         string     2 {"younger mom"=>841, "mature mom"=>159}
4  :weeks          uint8     24 [37, 41, 37, 38, 36, ... ]
5  :premie         string     2 {"full term"=>876, "premie"=>124}
6  :visits         uint8     28 [14, 12, 10, nil, 12, ... ], 56 nils
7  :gained         uint8     81 [28, 41, 28, 29, 48, ... ], 42 nils
8  :weight         double   360 [6.96, 8.86, 7.51, 6.19, 6.75, ... ]
9  :lowbirthweight string     2 {"not low"=>919, "low"=>81}
10 :sex            string     2 {"male"=>505, "female"=>495}
11 :habit          string     3 {"nonsmoker"=>867, "smoker"=>114, nil=>19}
12 :marital        string     2 {"married"=>594, "not married"=>406}
13 :whitemom       string     2 {"white"=>765, "not white"=>235}
Rdatasets: openintro: blizzard_salary, Blizzard Employee Voluntary Salary Info.
RedAmber::DataFrame : 466 x 9 Vectors
Vectors : 2 numeric, 7 strings
# key                 type   level data_preview
1 :timestamp          string   391 ["8/6/20 18:57", "8/6/20 18:56", "8/6/20 18:56", "7/31/20 16:50", "3/11/21 10:28", ... ]
2 :status             string     2 {"Full Time Employee"=>449, "Contractor"=>17}
3 :current_title      string   203 ["Consultant", "Engineer", "Engineer", "Customer Support", "Game Master", ... ], 15 nils
4 :current_salary     double   295 [1.0, 1.0, 1.0, 16.34, 16.73, ... ], 56 nils
5 :salary_type        string     3 {"year"=>402, "hour"=>63, "week"=>1}
6 :percent_incr       double    59 [1.0, 1.0, 1.0, 1.0, nil, ... ], 44 nils
7 :other_info         string   161 [nil, nil, nil, "Near smack dab in the middle of my pay band", nil, ... ], 297 nils
8 :location           string    13 ["Irvine", "Irvine", "Irvine", "Austin", "Austin", ... ], 3 nils
9 :performance_rating string     5 {"High"=>127, "Successful"=>178, nil=>130, "Top"=>24, "Developing"=>7}
Rdatasets: openintro: census, Random sample of 2000 U.S. Census Data
RedAmber::DataFrame : 500 x 8 Vectors
Vectors : 4 numeric, 4 strings
# key                    type   level data_preview
1 :census_year           uint16     1 {2000=>500}
2 :state_fips_code       string    47 ["Florida", "Florida", "Florida", "Florida", "Florida", ... ]
3 :total_family_income   uint32   366 [14550, 22800, 0, 23000, 48000, ... ], 15 nils
4 :age                   uint8     87 [44, 20, 20, 6, 55, ... ]
5 :sex                   string     2 {"Male"=>268, "Female"=>232}
6 :race_general          string     8 ["Two major races", "White", "Black", "White", "White", ... ]
7 :marital_status        string     6 ["Married/spouse present", "Never married/single", "Never married/single", "Never married/single", "Married/spouse present", ... ]
8 :total_personal_income int32    217 [0, 13000, 20000, nil, 36000, ... ], 108 nils
Rdatasets: openintro: china, Child care hours
RedAmber::DataFrame : 9788 x 3 Vectors
Vectors : 3 numeric
# key         type  level data_preview
1 :gender     uint8     2 {1=>4660, 2=>5128}
2 :edu        uint8     8 [1, 5, 2, 2, 3, ... ], 2434 nils
3 :child_care int16    70 [-99, -99, -99, -99, -99, ... ], 8549 nils
Rdatasets: openintro: cia_factbook, CIA Factbook Details on Countries
RedAmber::DataFrame : 259 x 11 Vectors
Vectors : 10 numeric, 1 string
#  key                      type   level data_preview
1  :country                 string   259 ["Russia", "Canada", "United States", "China", "Brazil", ... ]
2  :area                    double   249 [17098242.0, 9984670.0, 9826675.0, 9596960.0, 8514877.0, ... ], 2 nils
3  :birth_rate              double   217 [11.87, 10.29, 13.42, 12.17, 14.72, ... ], 35 nils
4  :death_rate              double   210 [13.83, 8.31, 8.15, 7.44, 6.54, ... ], 34 nils
5  :infant_mortality_rate   double   219 [7.08, 4.71, 6.17, 14.79, 19.21, ... ], 35 nils
6  :internet_users          double   201 [40853000.0, 26960000.0, 245000000.0, 389000000.0, 75982000.0, ... ], 46 nils
7  :life_exp_at_birth       double   212 [70.16, 81.67, 79.56, 75.15, 73.28, ... ], 35 nils
8  :maternal_mortality_rate uint16   104 [34, 12, 21, 37, 56, ... ], 75 nils
9  :net_migration_rate      double   177 [1.69, 5.66, 2.45, -0.32, -0.15, ... ], 37 nils
10 :population              uint32   239 [142470272, 34834841, 318892103, 1355692576, 202656788, ... ], 21 nils
11 :population_growth_rate  double   176 [-0.03, 0.76, 0.77, 0.44, 0.8, ... ], 26 nils
Rdatasets: openintro: cle_sac, Cleveland and Sacramento
RedAmber::DataFrame : 500 x 8 Vectors
Vectors : 3 numeric, 5 strings
# key              type   level data_preview
1 :year            uint16     1 {2000=>500}
2 :state           string     2 {"California"=>233, "Ohio"=>267}
3 :city            string     2 {"Sacramento"=>233, "Cleveland"=>267}
4 :age             uint8     87 [56, 53, 17, 37, 40, ... ]
5 :sex             string     2 {"Male"=>240, "Female"=>260}
6 :race            string     3 {"Other"=>61, "White"=>383, "Black"=>56}
7 :marital_status  string     6 ["Married / spouse present", "Married / spouse present", "Never married / single", "Never married / single", "Never married / single", ... ]
8 :personal_income uint32   234 [40240, 13600, 0, 49000, 38300, ... ], 113 nils
Rdatasets: openintro: email_test, Data frame representing information about a collection of emails
RedAmber::DataFrame : 1252 x 21 Vectors
Vectors : 18 numeric, 2 strings, 1 temporal
#  key           type   level data_preview
1  :spam         uint8      2 {1=>141, 0=>1111}
2  :to_multiple  uint8      2 {0=>1061, 1=>191}
3  :from         uint8      2 {1=>1250, 0=>2}
4  :cc           uint8     19 [0, 0, 0, 0, 0, ... ]
5  :sent_email   uint8      3 {0=>165, nil=>740, 1=>347}
6  :time         date64  1213 [#<DateTime: 2012-04-01T13:01:37+09:00 ((2456019j,14497s,0n),+32400s,2299161j)>, #<DateTime: 2012-04-02T04:02:05+09:00 ((2456019j,68525s,0n),+32400s,2299161j)>, ... ]
7  :image        uint8      7 [0, 0, 0, 0, 0, ... ]
8  :attach       uint8      9 [0, 0, 0, 0, 0, ... ]
9  :dollar       uint8     26 [0, 0, 0, 0, 0, ... ]
10 :winner       string     2 {"no"=>1223, "yes"=>29}
11 :inherit      uint8      3 {0=>1215, 1=>35, 2=>2}
12 :viagra       uint8      3 {0=>1250, 2=>1, 1=>1}
13 :password     uint8      9 [0, 0, 0, 0, 0, ... ]
14 :num_char     double  1180 [0.98, 0.961, 1.063, 0.619, 0.759, ... ]
15 :line_breaks  uint16   479 [15, 15, 15, 10, 10, ... ]
16 :format       uint8      2 {1=>944, 0=>308}
17 :re_subj      uint8      2 {0=>959, 1=>293}
18 :exclaim_subj uint8      2 {0=>1132, 1=>120}
19 :urgent_subj  uint8      2 {0=>1246, 1=>6}
20 :exclaim_mess uint16    51 [2, 1, 1, 1, 1, ... ]
 ... 1 more Vector ...
Rdatasets: openintro: exclusive_relationship, Number of Exclusive Relationships
RedAmber::DataFrame : 218 x 1 Vector
Vector : 1 numeric
# key  type  level data_preview
1 :num uint8    11 [2, 4, 1, 4, nil, ... ], 15 nils
Rdatasets: openintro: fastfood, Nutrition in fast food
RedAmber::DataFrame : 515 x 17 Vectors
Vectors : 14 numeric, 3 strings
#  key          type   level data_preview
1  :restaurant  string     8 ["Mcdonalds", "Mcdonalds", "Mcdonalds", "Mcdonalds", "Mcdonalds", ... ]
2  :item        string   505 ["Artisan Grilled Chicken Sandwich", "Single Bacon Smokehouse Burger", "Double Bacon Smokehouse Burger", "Grilled Bacon Smokehouse Chicken Sandwich", "Crispy Bacon Smokehouse Chicken Sandwich", ... ]
3  :calories    uint16   113 [380, 840, 1130, 750, 920, ... ]
4  :cal_fat     uint16   117 [60, 410, 600, 280, 410, ... ]
5  :total_fat   uint8     80 [7, 45, 67, 31, 45, ... ]
6  :sat_fat     double    40 [2.0, 17.0, 27.0, 10.0, 12.0, ... ]
7  :trans_fat   double    10 [0.0, 1.5, 3.0, 0.5, 0.5, ... ]
8  :cholesterol uint16    52 [95, 130, 220, 155, 120, ... ]
9  :sodium      uint16   197 [1110, 1580, 1920, 1940, 1980, ... ]
10 :total_carb  uint8    103 [44, 62, 63, 62, 81, ... ]
11 :fiber       uint8     19 [3, 2, 3, 2, 4, ... ], 12 nils
12 :sugar       uint8     31 [11, 18, 18, 18, 18, ... ]
13 :protein     uint8     71 [37, 46, 70, 55, 46, ... ], 1 nil
14 :vit_a       uint8     22 [4, 6, 10, 6, 6, ... ], 214 nils
15 :vit_c       uint16    24 [20, 20, 20, 25, 20, ... ], 210 nils
16 :calcium     uint16    27 [20, 20, 50, 20, 20, ... ], 210 nils
17 :salad       string     1 {"Other"=>515}
Rdatasets: openintro: get_it_dunn_run, Get it Dunn Run, Race Times
RedAmber::DataFrame : 978 x 10 Vectors
Vectors : 3 numeric, 6 strings, 1 temporal
#  key               type   level data_preview
1  :date             date64     2 [#<DateTime: 2017-05-13T09:00:00+09:00 ((2457887j,0s,0n),+32400s,2299161j)>, #<DateTime: 2017-05-13T09:00:00+09:00 ((2457887j,0s,0n),+32400s,2299161j)>, ... ]
2  :race             string     2 {"5k"=>776, "half-marathon"=>202}
3  :bib_num          uint16   964 [1690, 1691, 1692, 1878, 1906, ... ]
4  :first_name       string   519 ["Jeff", "Julie", "Aimothy", "Ashley", "Bob", ... ]
5  :last_initial     string    37 ["A", "A", "A", "A", "A", ... ]
6  :sex              string     2 {"M"=>393, "F"=>585}
7  :age              uint8     76 [58, 57, 47, 32, 59, ... ], 5 nils
8  :city             string   182 ["Menomonie", "Menomonie", "Menomonie", "Cadott", "Boyd", ... ]
9  :state            string    14 ["WI", "WI", "WI", "WI", "WI", ... ]
10 :run_time_minutes double   970 [59.473, 59.4626666666667, 36.5303333333333, 33.2705, 56.6825, ... ]
Rdatasets: openintro: gss2010, 2010 General Social Survey
RedAmber::DataFrame : 2044 x 5 Vectors
Vectors : 3 numeric, 2 strings
# key       type   level data_preview
1 :hrsrelax uint8     19 [2, 4, nil, nil, nil, ... ], 890 nils
2 :mntlhlth uint8     23 [3, 6, nil, nil, nil, ... ], 893 nils
3 :hrs1     uint8     73 [55, 45, nil, nil, nil, ... ], 872 nils
4 :degree   string     5 {"BACHELOR"=>375, "LT HIGH SCHOOL"=>305, "JUNIOR COLLEGE"=>145, "HIGH SCHOOL"=>1001, "GRADUATE"=>218}
5 :grass    string     3 {nil=>785, "LEGAL"=>603, "NOT LEGAL"=>656}
Rdatasets: openintro: heart_transplant, Heart Transplant Data
RedAmber::DataFrame : 103 x 8 Vectors
Vectors : 5 numeric, 3 strings
# key         type   level data_preview
1 :id         uint8     99 [15, 43, 61, 75, 6, ... ]
2 :acceptyear uint8      8 [68, 70, 71, 72, 68, ... ]
3 :age        uint8     35 [53, 43, 52, 52, 54, ... ]
4 :survived   string     2 {"dead"=>75, "alive"=>28}
5 :survtime   uint16    88 [1, 2, 2, 2, 3, ... ]
6 :prior      string     2 {"no"=>91, "yes"=>12}
7 :transplant string     2 {"control"=>34, "treatment"=>69}
8 :wait       uint16    41 [nil, nil, nil, nil, nil, ... ], 34 nils
Rdatasets: openintro: hfi, Human Freedom Index
RedAmber::DataFrame : 1458 x 123 Vectors
Vectors : 120 numeric, 3 strings
#   key                                 type   level data_preview
1   :year                               uint16     9 [2016, 2016, 2016, 2016, 2016, ... ]
2   :ISO_code                           string   162 ["ALB", "DZA", "AGO", "ARG", "ARM", ... ]
3   :countries                          string   162 ["Albania", "Algeria", "Angola", "Argentina", "Armenia", ... ]
4   :region                             string    10 ["Eastern Europe", "Middle East & North Africa", "Sub-Saharan Africa", "Latin America & the Caribbean", "Caucasus & Central Asia", ... ]
5   :pf_rol_procedural                  double   424 [6.661502941, nil, nil, 7.098483117, nil, ... ], 578 nils
6   :pf_rol_civil                       double   442 [4.547243777, nil, nil, 5.791960457, nil, ... ], 578 nils
7   :pf_rol_criminal                    double   454 [4.666508223, nil, nil, 4.343929507, nil, ... ], 578 nils
8   :pf_rol                             double   727 [5.291751647, 3.819566026, 3.451813885, 5.744791027, 5.003205353, ... ], 80 nils
9   :pf_ss_homicide                     double   943 [8.920429431, 9.456253595, 8.060260239, 7.62297422, 8.808749692, ... ], 80 nils
10  :pf_ss_disappearances_disap         uint8      4 {10=>1048, 5=>188, 0=>133, nil=>89}
11  :pf_ss_disappearances_violent       double   184 [10.0, 9.294029701, 10.0, 10.0, 10.0, ... ], 80 nils
12  :pf_ss_disappearances_organized     double     8 [10.0, 5.0, 7.5, 7.5, 7.5, ... ], 179 nils
13  :pf_ss_disappearances_fatalities    double   457 [10.0, 9.926119387, 10.0, 10.0, 9.316196301, ... ], 80 nils
14  :pf_ss_disappearances_injuries      double   509 [10.0, 9.990149252, 10.0, 9.990877458, 9.93161963, ... ], 80 nils
15  :pf_ss_disappearances               double   589 [10.0, 8.842059668, 8.5, 9.498175492, 9.349563186, ... ], 80 nils
16  :pf_ss_women_fgm                    double    43 [10.0, 10.0, 10.0, 10.0, 10.0, ... ], 172 nils
17  :pf_ss_women_missing                double     6 [7.5, 7.5, 10.0, 10.0, 5.0, ... ], 120 nils
18  :pf_ss_women_inheritance_widows     uint8      4 {5=>352, 0=>166, 10=>399, nil=>541}
19  :pf_ss_women_inheritance_daughters  uint8      4 {5=>342, 0=>172, 10=>403, nil=>541}
20  :pf_ss_women_inheritance            double     6 [5.0, 0.0, 5.0, 10.0, 10.0, ... ], 119 nils
 ... 103 more Vectors ...
Rdatasets: openintro: husbands_wives, Great Britain: husband and wife pairs
RedAmber::DataFrame : 199 x 7 Vectors
Vectors : 7 numeric
# key                   type   level data_preview
1 :age_husband          uint8     44 [49, 25, 40, 52, 58, ... ]
2 :age_wife             uint8     44 [43, 28, 30, 57, 52, ... ], 29 nils
3 :ht_husband           uint16   121 [1809, 1841, 1659, 1779, 1616, ... ]
4 :ht_wife              uint16    53 [1590, 1560, 1620, 1540, 1420, ... ]
5 :age_husb_at_marriage uint8     29 [25, 19, 38, 26, 30, ... ], 4 nils
6 :age_wife_at_marriage uint8     26 [19, 22, 28, 31, 24, ... ], 30 nils
7 :years_married        uint8     40 [24, 6, 2, 26, 28, ... ], 4 nils
Rdatasets: openintro: loan50, Loan data from Lending Club
RedAmber::DataFrame : 50 x 18 Vectors
Vectors : 11 numeric, 7 strings
#  key                      type   level data_preview
1  :state                   string    25 ["NJ", "CA", "SC", "CA", "OH", ... ]
2  :emp_length              uint8     12 [3, 10, nil, 0, 4, ... ], 2 nils
3  :term                    uint8      2 {60=>14, 36=>36}
4  :homeownership           string     3 {"rent"=>21, "mortgage"=>26, "own"=>3}
5  :annual_income           double    36 [59000.0, 60000.0, 75000.0, 75000.0, 254000.0, ... ]
6  :verified_income         string     3 {"Not Verified"=>21, "Verified"=>9, "Source Verified"=>20}
7  :debt_to_income          double    50 [0.557525423728814, 1.30568333333333, 1.05628, 0.574346666666667, 0.238149606299213, ... ]
8  :total_credit_limit      uint32    50 [95131, 51929, 301373, 59890, 422619, ... ]
9  :total_credit_utilized   uint32    50 [32894, 78341, 79221, 43076, 60490, ... ]
10 :num_cc_carrying_balance uint8     12 [8, 2, 14, 10, 2, ... ]
11 :loan_purpose            string     8 ["debt_consolidation", "credit_card", "debt_consolidation", "credit_card", "home_improvement", ... ]
12 :loan_amount             uint16    34 [22000, 6000, 25000, 6000, 25000, ... ]
13 :grade                   string     5 {"B"=>19, "E"=>2, "D"=>8, "A"=>15, "C"=>6}
14 :interest_rate           double    28 [10.9, 9.92, 26.3, 9.92, 9.43, ... ]
15 :public_record_bankrupt  uint8      2 {0=>46, 1=>4}
16 :loan_status             string     2 {"Current"=>44, "Fully Paid"=>6}
17 :has_second_income       string     2 {"FALSE"=>42, "TRUE"=>8}
18 :total_income            double    41 [59000.0, 60000.0, 75000.0, 75000.0, 254000.0, ... ]
Rdatasets: openintro: loans_full_schema, Loan data from Lending Club
RedAmber::DataFrame : 10000 x 55 Vectors
Vectors : 42 numeric, 13 strings
#  key                               type   level data_preview
1  :emp_title                        string  4742 ["global config engineer ", "warehouse office clerk", "assembly", "customer service", "security supervisor ", ... ]
2  :emp_length                       uint8     12 [3, 10, 3, 1, 10, ... ], 817 nils
3  :state                            string    50 ["NJ", "HI", "WI", "PA", "CA", ... ]
4  :homeownership                    string     3 {"MORTGAGE"=>4789, "RENT"=>3858, "OWN"=>1353}
5  :annual_income                    double  1463 [90000.0, 40000.0, 40000.0, 30000.0, 35000.0, ... ]
6  :verified_income                  string     3 {"Verified"=>2290, "Not Verified"=>3594, "Source Verified"=>4116}
7  :debt_to_income                   double  3674 [18.01, 5.04, 21.15, 10.16, 57.96, ... ], 24 nils
8  :annual_income_joint              double   597 [nil, nil, nil, nil, 57000.0, ... ], 8505 nils
9  :verification_income_joint        string     4 {""=>8545, "Verified"=>345, "Not Verified"=>611, "Source Verified"=>499}
10 :debt_to_income_joint             double  1190 [nil, nil, nil, nil, 37.66, ... ], 8505 nils
11 :delinq_2y                        uint8     12 [0, 0, 0, 0, 0, ... ]
12 :months_since_last_delinq         uint8     98 [38, nil, 28, nil, nil, ... ], 5658 nils
13 :earliest_credit_line             uint16    53 [2001, 1996, 2006, 2007, 2008, ... ]
14 :inquiries_last_12m               uint8     26 [6, 1, 4, 0, 7, ... ]
15 :total_credit_lines               uint8     78 [28, 30, 31, 4, 22, ... ]
16 :open_credit_lines                uint8     45 [10, 14, 10, 4, 16, ... ]
17 :total_credit_limit               uint32  9119 [70795, 28800, 24193, 25400, 69839, ... ]
18 :total_credit_utilized            uint32  9497 [38767, 4321, 16000, 4997, 52722, ... ]
19 :num_collections_last_12m         uint8      4 {0=>9873, 2=>9, 1=>117, 3=>1}
20 :num_historical_failed_to_pay     uint8      9 [0, 1, 0, 1, 0, ... ]
 ... 35 more Vectors ...
Rdatasets: openintro: mammals, Sleep in Mammals
RedAmber::DataFrame : 62 x 11 Vectors
Vectors : 10 numeric, 1 string
#  key           type   level data_preview
1  :species      string    62 ["Africanelephant", "Africangiantpouchedrat", "ArcticFox", "Arcticgroundsquirrel", "Asianelephant", ... ]
2  :body_wt      double    60 [6654.0, 1.0, 3.385, 0.92, 2547.0, ... ]
3  :brain_wt     double    59 [5712.0, 6.6, 44.5, 5.7, 4603.0, ... ]
4  :non_dreaming double    40 [nil, 6.3, nil, nil, 2.1, ... ], 14 nils
5  :dreaming     double    31 [nil, 2.0, nil, nil, 1.8, ... ], 12 nils
6  :total_sleep  double    45 [3.3, 8.3, 12.5, 16.5, 3.9, ... ], 4 nils
7  :life_span    double    48 [38.6, 4.5, 14.0, nil, 69.0, ... ], 4 nils
8  :gestation    double    50 [645.0, 42.0, 60.0, 25.0, 624.0, ... ], 4 nils
9  :predation    uint8      5 {3=>12, 1=>14, 5=>14, 4=>7, 2=>15}
10 :exposure     uint8      5 {5=>13, 1=>27, 2=>13, 4=>5, 3=>4}
11 :danger       uint8      5 {3=>10, 1=>19, 4=>10, 5=>9, 2=>14}
Rdatasets: openintro: mlb_teams, Major League Baseball Teams Data.
RedAmber::DataFrame : 2784 x 41 Vectors
Vectors : 33 numeric, 8 strings
#  key                     type   level data_preview
1  :year                   uint16   145 [1876, 1876, 1876, 1876, 1876, ... ]
2  :league_id              string     2 {"NL"=>1504, "AL"=>1280}
3  :division_id            string     4 {""=>1346, "W"=>565, "E"=>588, "C"=>285}
4  :rank                   uint8     12 [4, 1, 8, 2, 5, ... ]
5  :games_played           uint8     85 [70, 66, 65, 69, 69, ... ]
6  :home_games             uint8     48 [nil, nil, nil, nil, nil, ... ], 228 nils
7  :wins                   uint8    100 [39, 52, 9, 47, 30, ... ]
8  :losses                 uint8    103 [31, 14, 56, 21, 36, ... ]
9  :division_winner        string     3 {""=>1374, "Y"=>260, "N"=>1150}
10 :wild_card_winner       string     3 {""=>2010, "N"=>698, "Y"=>76}
11 :league_winner          string     3 {"N"=>2493, "Y"=>263, ""=>28}
12 :world_series_winner    string     3 {""=>248, "N"=>2416, "Y"=>120}
13 :runs_scored            uint16   593 [471, 624, 238, 429, 280, ... ]
14 :at_bats                uint16  1006 [2722, 2748, 2372, 2664, 2570, ... ]
15 :hits                   uint16   676 [723, 926, 555, 711, 641, ... ]
16 :doubles                uint16   277 [96, 131, 51, 96, 68, ... ]
17 :triples                uint8    122 [24, 32, 12, 22, 14, ... ]
18 :homeruns               uint16   259 [9, 8, 4, 2, 6, ... ]
19 :walks                  uint16   530 [58, 70, 41, 39, 24, ... ]
20 :strikeouts_by_batters  uint16  1062 [98, 45, 136, 78, 98, ... ], 16 nils
 ... 21 more Vectors ...
Rdatasets: openintro: mn_police_use_of_force, Minneapolis police use of force data.
RedAmber::DataFrame : 12925 x 13 Vectors
Vectors : 2 numeric, 11 strings
#  key                type   level data_preview
1  :response_datetime string  5310 ["2016/01/01 00:47:36", "2016/01/01 02:19:34", "2016/01/01 02:19:34", "2016/01/01 02:28:48", "2016/01/01 02:28:48", ... ]
2  :problem           string   126 ["Assault in Progress ", "Fight ", "Fight ", "Fight ", "Fight ", ... ]
3  :is_911_call       string     2 {"Yes"=>7004, "No"=>5921}
4  :primary_offense   string   253 ["DASLT1", "DISCON", "DISCON", "PRIORI", "PRIORI", ... ]
5  :subject_injury    string     3 {""=>9848, "No"=>1446, "Yes"=>1631}
6  :force_type        string    11 ["Bodily Force", "Chemical Irritant", "Chemical Irritant", "Chemical Irritant", "Chemical Irritant", ... ]
7  :force_type_action string    41 ["Body Weight to Pin", "Personal Mace", "Personal Mace", "Crowd Control Mace", "Crowd Control Mace", ... ]
8  :race              string     7 ["Black", "Black", "White", "Black", "Black", ... ], 1024 nils
9  :sex               string     3 {"Male"=>10280, "Female"=>2144, nil=>501}
10 :age               uint8     68 [20, 27, 23, 20, 20, ... ], 1066 nils
11 :type_resistance   string    24 ["Tensed", "Verbal Non-Compliance", "Verbal Non-Compliance", "Commission of Crime", "Commission of Crime", ... ]
12 :precinct          uint8      6 [1, 1, 1, 1, 1, ... ]
13 :neighborhood      string    87 ["Downtown East", "Downtown West", "Downtown West", "Downtown West", "Downtown West", ... ]
Rdatasets: openintro: mtl, Medial temporal lobe (MTL) and other data for 26 participants
RedAmber::DataFrame : 35 x 23 Vectors
Vectors : 19 numeric, 4 strings
#  key                              type   level data_preview
1  :subject                         uint16    35 [9690, 9722, 9735, 9787, 10010, ... ]
2  :sex                             string     2 {"M"=>10, "F"=>25}
3  :ethnic                          string     2 {"Caucasian"=>29, "Other"=>6}
4  :educ                            uint8      8 [14, 20, 14, 14, 18, ... ]
5  :e4grp                           string     2 {"Non-E4"=>20, "E4"=>15}
6  :age                             uint8     20 [66, 71, 66, 63, 71, ... ]
7  :mmse                            uint8      3 {30=>16, 29=>14, 28=>5}
8  :ham_d                           uint8      9 [4, 8, 2, 0, 0, ... ], 2 nils
9  :ham_a                           uint8     12 [9, 4, 0, 9, 1, ... ], 2 nils
10 :dig_sym                         uint8     29 [57, 47, 60, 64, 94, ... ], 4 nils
11 :delay_vp                        uint8      7 [8, 1, 3, 8, 8, ... ], 3 nils
12 :bfr_selective_reminding_delayed uint8     12 [11, nil, 2, 4, 5, ... ], 2 nils
13 :sitting                         uint8     13 [10, 11, 5, 7, 3, ... ]
14 :met_minwk                       double    32 [777.0, 1039.8, 795.0, 2400.0, 2358.0, ... ]
15 :ipa_qgrp                        string     2 {"Low"=>21, "High"=>14}
16 :aca1                            double    35 [2.25275, 2.08825, 2.2096, 1.8206, 1.969, ... ]
17 :aca23dg                         double    34 [3.3639, 2.916, 3.15045, 2.8603, 3.0667, ... ]
18 :ae_cort                         double    35 [2.6358, 2.7773, 2.40835, 2.30295, 2.73345, ... ]
19 :a_fusi_cort                     double    35 [2.78055, 2.4982, 2.7616, 2.48635, 2.627, ... ]
20 :a_ph_cort                       double    35 [2.4611, 3.13505, 3.17635, 2.6916, 2.5617, ... ]
 ... 3 more Vectors ...
Rdatasets: openintro: ncbirths, North Carolina births, 1000 cases
RedAmber::DataFrame : 1000 x 13 Vectors
Vectors : 6 numeric, 7 strings
#  key             type   level data_preview
1  :fage           uint8     38 [nil, nil, 19, 21, nil, ... ], 171 nils
2  :mage           uint8     33 [13, 14, 15, 15, 15, ... ]
3  :mature         string     2 {"younger mom"=>867, "mature mom"=>133}
4  :weeks          uint8     24 [39, 42, 37, 41, 39, ... ], 2 nils
5  :premie         string     3 {"full term"=>846, "premie"=>152, nil=>2}
6  :visits         uint8     27 [10, 15, 11, 6, 9, ... ], 9 nils
7  :marital        string     3 {"not married"=>386, "married"=>613, nil=>1}
8  :gained         uint8     72 [38, 20, 38, 34, 27, ... ], 27 nils
9  :weight         double   126 [7.63, 7.88, 6.63, 8.0, 6.38, ... ]
10 :lowbirthweight string     2 {"not low"=>889, "low"=>111}
11 :gender         string     2 {"male"=>497, "female"=>503}
12 :habit          string     3 {"nonsmoker"=>873, "smoker"=>126, nil=>1}
13 :whitemom       string     3 {"not white"=>284, "white"=>714, nil=>2}
Rdatasets: openintro: piracy, Piracy and PIPA/SOPA
RedAmber::DataFrame : 534 x 8 Vectors
Vectors : 3 numeric, 5 strings
# key        type   level data_preview
1 :name      string   533 ["Ackerman, Gary", "Adams, Sandra", "Aderholt, Robert", "Akin, Todd", "Alexander, Rodney", ... ]
2 :party     string     3 {" D"=>243, " R"=>289, " I"=>2}
3 :state     string    50 ["NY", "FL", "AL", "MO", "LA", ... ]
4 :money_pro int32    327 [13350, 3500, 4779, 2500, 3500, ... ], 14 nils
5 :money_con int32    351 [14800, 5650, 23944, 8200, 2700, ... ], 35 nils
6 :years     uint8     43 [30, 2, 16, 12, 10, ... ]
7 :stance    string     5 {"unknown"=>294, "no"=>122, "yes"=>63, "leaning no"=>44, "undecided"=>11}
8 :chamber   string     2 {"house"=>434, "senate"=>100}
Rdatasets: openintro: pm25_2011_durham, Air quality for Durham, NC
RedAmber::DataFrame : 449 x 20 Vectors
Vectors : 12 numeric, 8 strings
#  key                             type   level data_preview
1  :date                           string   360 ["1/3/11", "1/6/11", "1/9/11", "1/10/11", "1/18/11", ... ]
2  :aqs_site_id                    string     1 {"37-063-0015"=>449}
3  :poc                            uint8      2 {1=>91, 3=>358}
4  :daily_mean_pm2_5_concentration double   410 [5.9, 10.4, 5.6, 6.2, 9.4, ... ]
5  :units                          string     1 {"ug/m3 LC"=>449}
6  :daily_aqi_value                uint8     45 [19, 34, 18, 20, 31, ... ], 358 nils
7  :daily_obs_count                uint8      7 [1, 1, 1, 1, 1, ... ]
8  :percent_complete               uint8      6 [100, 100, 100, 100, 100, ... ]
9  :aqs_parameter_code             uint32     2 {88101=>91, 88502=>358}
10 :aqs_parameter_desc             string     2 {"PM2.5 - Local Conditions"=>91, "Acceptable PM2.5 AQI & Speciation Mass"=>358}
11 :csa_code                       uint16     1 {450=>449}
12 :csa_name                       string     1 {"Raleigh-Durham-Cary, NC"=>449}
13 :cbsa_code                      uint16     1 {20500=>449}
14 :cbsa_name                      string     1 {"Durham, NC"=>449}
15 :state_code                     uint8      1 {37=>449}
16 :state                          string     1 {"North Carolina"=>449}
17 :county_code                    uint8      1 {63=>449}
18 :county                         string     1 {"Durham"=>449}
19 :site_latitude                  double     1 {36.032944=>449}
20 :site_longitude                 double     1 {-78.905417=>449}
Rdatasets: openintro: possum, Possums in Australia and New Guinea
RedAmber::DataFrame : 104 x 8 Vectors
Vectors : 6 numeric, 2 strings
# key      type   level data_preview
1 :site    uint8      7 [1, 1, 1, 1, 1, ... ]
2 :pop     string     2 {"Vic"=>46, "other"=>58}
3 :sex     string     2 {"m"=>61, "f"=>43}
4 :age     uint8     10 [8, 6, 6, 6, 2, ... ], 2 nils
5 :head_l  double    71 [94.1, 92.5, 94.0, 93.2, 91.5, ... ]
6 :skull_w double    64 [60.4, 57.6, 60.0, 57.1, 56.3, ... ]
7 :total_l double    34 [89.0, 91.5, 95.5, 92.0, 85.5, ... ]
8 :tail_l  double    19 [36.0, 36.5, 39.0, 38.0, 36.0, ... ]
Rdatasets: openintro: president, United States Presidental History
RedAmber::DataFrame : 67 x 5 Vectors
Vectors : 2 numeric, 3 strings
# key     type   level data_preview
1 :potus  string    43 ["George Washington", "John Adams", "Thomas Jefferson", "Thomas Jefferson", "James Madison", ... ]
2 :party  string     8 [" ", "Federalist", "Democratic-Republican", "Democratic-Republican", "Democratic-Republican", ... ]
3 :start  uint16    56 [1789, 1797, 1801, 1805, 1809, ... ]
4 :end    uint16    57 [1797, 1801, 1805, 1809, 1812, ... ], 1 nil
5 :vpotus string    49 ["John Adams", "Thomas Jefferson", "Aaron Burr", "George Clinton", "George Clinton", ... ]
Rdatasets: openintro: prius_mpg, User reported fuel efficiency for 2017 Toyota Prius Prime
RedAmber::DataFrame : 19 x 5 Vectors
Vectors : 3 numeric, 1 string, 1 temporal
# key           type   level data_preview
1 :average_mpg  double    19 [128.6, 202.6, 98.4, 241.1, 148.9, ... ]
2 :state        string    13 ["NV", "CA", "AL", "FL", "CA", ... ]
3 :stop_and_go  double    14 [nil, 0.48, 0.33, nil, 0.8, ... ], 4 nils
4 :highway      double    14 [nil, 0.52, 0.67, nil, 0.2, ... ], 4 nils
5 :last_updated date64    19 [#<DateTime: 2019-02-20T09:00:00+09:00 ((2458535j,0s,0n),+32400s,2299161j)>, #<DateTime: 2019-02-16T09:00:00+09:00 ((2458531j,0s,0n),+32400s,2299161j)>, ... ]
Rdatasets: openintro: smoking, UK Smoking Data
RedAmber::DataFrame : 1691 x 12 Vectors
Vectors : 3 numeric, 9 strings
#  key                    type   level data_preview
1  :gender                string     2 {"Male"=>726, "Female"=>965}
2  :age                   uint8     79 [38, 42, 40, 40, 39, ... ]
3  :marital_status        string     5 {"Divorced"=>161, "Single"=>427, "Married"=>812, "Widowed"=>223, "Separated"=>68}
4  :highest_qualification string     8 ["No Qualification", "No Qualification", "Degree", "Degree", "GCSE/O Level", ... ]
5  :nationality           string     8 ["British", "British", "English", "English", "British", ... ]
6  :ethnicity             string     7 ["White", "White", "White", "White", "White", ... ]
7  :gross_income          string    10 ["2,600 to 5,200", "Under 2,600", "28,600 to 36,400", "10,400 to 15,600", "2,600 to 5,200", ... ]
8  :region                string     7 ["The North", "The North", "The North", "The North", "The North", ... ]
9  :smoke                 string     2 {"No"=>1270, "Yes"=>421}
10 :amt_weekends          uint8     25 [nil, 12, nil, nil, nil, ... ], 1270 nils
11 :amt_weekdays          uint8     25 [nil, 12, nil, nil, nil, ... ], 1270 nils
12 :type                  string     5 {""=>1270, "Packets"=>297, "Hand-Rolled"=>72, "Both/Mainly Packets"=>42, "Both/Mainly Hand-Rolled"=>10}
Rdatasets: openintro: snowfall, Snowfall at Paradise, Mt. Rainier National Park
RedAmber::DataFrame : 100 x 3 Vectors
Vectors : 3 numeric
# key         type   level data_preview
1 :year_start uint16   100 [1920, 1921, 1922, 1923, 1924, ... ]
2 :year_end   uint16   100 [1921, 1922, 1923, 1924, 1925, ... ]
3 :total_snow double    84 [671.0, 723.0, 565.0, 551.0, 674.0, ... ], 9 nils
Rdatasets: openintro: sowc_demographics, SOWC Demographics Data.
RedAmber::DataFrame : 202 x 18 Vectors
Vectors : 17 numeric, 1 string
#  key                         type   level data_preview
1  :countries_and_areas        string   202 ["Afghanistan", "Albania", "Algeria", "Andorra", "Angola", ... ]
2  :total_pop_2018             uint32   198 [37172, 2883, 42228, 77, 30810, ... ]
3  :under18_pop_2018           uint32   183 [18745, 635, 14416, nil, 16457, ... ], 18 nils
4  :under5_pop_2018            uint32   175 [5601, 173, 4951, nil, 5553, ... ], 18 nils
5  :pop_growth_rate_2018       double    52 [3.2, -0.5, 1.7, 0.9, 3.5, ... ]
6  :pop_growth_rate_2030       double    43 [2.1, -0.3, 1.5, 0.1, 3.1, ... ]
7  :births_2018                uint16   156 [1207, 34, 1023, nil, 1257, ... ], 18 nils
8  :fertility_2018             double    47 [4.5, 1.6, 3.0, nil, 5.5, ... ], 18 nils
9  :life_expectancy_1970       uint8     41 [37, 67, 50, nil, 41, ... ], 18 nils
10 :life_expectancy_2000       uint8     39 [56, 74, 71, nil, 47, ... ], 18 nils
11 :life_expectancy_2018       uint8     31 [64, 78, 77, nil, 61, ... ], 18 nils
12 :dependency_ratio_total     uint8     62 [84, 46, 58, nil, 96, ... ], 18 nils
13 :dependency_ratio_child     uint8     71 [79, 26, 47, nil, 92, ... ], 18 nils
14 :dependency_ratio_oldage    uint8     34 [5, 20, 10, nil, 4, ... ], 18 nils
15 :percent_urban_2018         uint8     80 [25, 60, 73, 88, 66, ... ]
16 :pop_urban_growth_rate_2018 double    68 [4.0, 1.6, 2.8, 0.6, 5.0, ... ], 1 nil
17 :pop_urban_growth_rate_2030 double    55 [3.4, 0.9, 2.1, 0.1, 4.0, ... ], 1 nil
18 :migration_rate             double    97 [-1.7, -4.9, -0.2, nil, 0.2, ... ], 18 nils
Rdatasets: openintro: sowc_maternal_newborn, SOWC Maternal and Newborn Health Data.
RedAmber::DataFrame : 202 x 18 Vectors
Vectors : 17 numeric, 1 string
#  key                            type   level data_preview
1  :countries_and_areas           string   202 ["Afghanistan", "Albania", "Algeria", "Andorra", "Angola", ... ]
2  :life_expectancy_female        uint8     31 [66, 80, 78, nil, 64, ... ], 18 nils
3  :family_planning_1549          uint8     66 [42, 5, 77, nil, 30, ... ], 72 nils
4  :family_planning_1519          uint8     53 [21, 5, nil, nil, 15, ... ], 122 nils
5  :adolescent_birth_rate         uint8    104 [77, 17, 10, 3, 163, ... ], 2 nils
6  :births_age_18                 uint8     39 [20, 3, 1, nil, 38, ... ], 86 nils
7  :antenatal_care_1              uint8     33 [59, 88, 93, nil, 82, ... ], 37 nils
8  :antenatal_care_4_1549         uint8     62 [18, 78, 67, nil, 61, ... ], 55 nils
9  :antenatal_care_4_1519         uint8     51 [16, 72, nil, nil, 56, ... ], 109 nils
10 :delivery_care_attendant_1549  uint8     53 [51, 100, 97, nil, 50, ... ], 33 nils
11 :delivery_care_attendant_1519  uint8     47 [54, 100, nil, nil, 50, ... ], 110 nils
12 :delivery_care_institutional   uint8     54 [48, 99, 97, nil, 46, ... ], 34 nils
13 :c_section                     uint8     44 [3, 31, 16, nil, 4, ... ], 44 nils
14 :postnatal_health_newborns     uint8     55 [9, 86, nil, nil, 21, ... ], 115 nils
15 :postnatal_health_mothers      uint8     60 [40, 88, nil, nil, 23, ... ], 109 nils
16 :maternal_deaths_2017          uint32   110 [7700, 5, 1200, nil, 3000, ... ], 18 nils
17 :maternal_mortality_ratio_2017 uint16   116 [638, 15, 112, nil, 241, ... ], 18 nils
18 :risk_maternal_death_2017      uint16   136 [33, 3800, 270, nil, 69, ... ], 18 nils
Rdatasets: openintro: sp500, Financial information for 50 S&P 500 companies
RedAmber::DataFrame : 50 x 12 Vectors
Vectors : 11 numeric, 1 string
#  key            type   level data_preview
1  :stock         string    50 ["SCHW", "PBCT", "MAT", "CCL", "VIAB", ... ]
2  :market_cap    uint32    50 [17700, 4340, 11210, 24050, 26110, ... ]
3  :ent_value     uint32    48 [15760, 4550, 11210, 32550, 32290, ... ]
4  :trail_pe      double    49 [19.89, 21.84, 15.16, 12.79, 16.18, ... ]
5  :forward_pe    double    50 [16.77, 13.24, 12.48, 11.95, 9.64, ... ]
6  :ev_over_rev   double    49 [3.36, 3.9, 1.79, 2.06, 2.15, ... ]
7  :profit_margin double    50 [18.42, 17.03, 12.27, 12.11, 11.56, ... ]
8  :revenue       double    48 [4690.0, 1170.0, 6270.0, 15790.0, 15040.0, ... ]
9  :growth        double    40 [1.2, 18.7, 1.4, 5.7, 3.2, ... ], 3 nils
10 :earn_before   double    48 [nil, nil, 1220.0, 3780.0, 4090.0, ... ], 3 nils
11 :cash          double    50 [35310.0, 865.3, 1370.0, 450.0, 1150.0, ... ], 1 nil
12 :debt          double    50 [2000.0, 1080.0, 1560.0, 9350.0, 7790.0, ... ]
Rdatasets: openintro: speed_gender_height, Speed, gender, and height of 1325 students
RedAmber::DataFrame : 1325 x 3 Vectors
Vectors : 2 numeric, 1 string
# key     type   level data_preview
1 :speed  uint8     70 [85, 40, 87, 110, 110, ... ], 18 nils
2 :gender string     2 {"female"=>882, "male"=>443}
3 :height double    45 [69.0, 71.0, 64.0, 60.0, 70.0, ... ], 5 nils
Rdatasets: openintro: world_pop, World Population Data.
RedAmber::DataFrame : 216 x 62 Vectors
Vectors : 61 numeric, 1 string
#  key        type   level data_preview
1  :country   string   216 ["Afghanistan", "Albania", "Algeria", "American Samoa", "Andorra", ... ]
2  :year_1960 uint32   215 [8996967, 1608800, 11057864, 20127, 13410, ... ], 1 nil
3  :year_1961 uint32   216 [9169406, 1659800, 11336336, 20605, 14378, ... ], 1 nil
4  :year_1962 uint32   215 [9351442, 1711319, 11619828, 21246, 15379, ... ], 1 nil
5  :year_1963 uint32   216 [9543200, 1762621, 11912800, 22029, 16407, ... ], 1 nil
6  :year_1964 uint32   216 [9744772, 1814135, 12221675, 22850, 17466, ... ], 1 nil
7  :year_1965 uint32   216 [9956318, 1864791, 12550880, 23675, 18542, ... ], 1 nil
8  :year_1966 uint32   216 [10174840, 1914573, 12902626, 24473, 19646, ... ], 1 nil
9  :year_1967 uint32   216 [10399936, 1965598, 13275020, 25235, 20760, ... ], 1 nil
10 :year_1968 uint32   216 [10637064, 2022272, 13663581, 25980, 21886, ... ], 1 nil
11 :year_1969 uint32   216 [10893772, 2081695, 14061724, 26698, 23053, ... ], 1 nil
12 :year_1970 uint32   216 [11173654, 2135479, 14464992, 27362, 24275, ... ], 1 nil
13 :year_1971 uint32   216 [11475450, 2187853, 14872253, 27982, 25571, ... ], 1 nil
14 :year_1972 uint32   215 [11791222, 2243126, 15285992, 28564, 26885, ... ], 1 nil
15 :year_1973 uint32   216 [12108963, 2296752, 15709831, 29103, 28232, ... ], 1 nil
16 :year_1974 uint32   216 [12412960, 2350124, 16149018, 29595, 29515, ... ], 1 nil
17 :year_1975 uint32   216 [12689164, 2404831, 16607706, 30045, 30705, ... ], 1 nil
18 :year_1976 uint32   216 [12943093, 2458526, 17085799, 30455, 31782, ... ], 1 nil
19 :year_1977 uint32   216 [13171294, 2513546, 17582899, 30834, 32769, ... ], 1 nil
20 :year_1978 uint32   216 [13341199, 2566266, 18102266, 31262, 33744, ... ], 1 nil
 ... 42 more Vectors ...
Rdatasets: palmerpenguins: penguins, Size measurements for adult foraging penguins near Palmer Station, Antarctica
RedAmber::DataFrame : 344 x 8 Vectors
Vectors : 5 numeric, 3 strings
# key                type   level data_preview
1 :species           string     3 {"Adelie"=>152, "Gentoo"=>124, "Chinstrap"=>68}
2 :island            string     3 {"Torgersen"=>52, "Biscoe"=>168, "Dream"=>124}
3 :bill_length_mm    double   165 [39.1, 39.5, 40.3, nil, 36.7, ... ], 2 nils
4 :bill_depth_mm     double    81 [18.7, 17.4, 18.0, nil, 19.3, ... ], 2 nils
5 :flipper_length_mm uint8     56 [181, 186, 195, nil, 193, ... ], 2 nils
6 :body_mass_g       uint16    95 [3750, 3800, 3250, nil, 3450, ... ], 2 nils
7 :sex               string     3 {"male"=>168, "female"=>165, nil=>11}
8 :year              uint16     3 {2007=>110, 2008=>114, 2009=>120}
Rdatasets: plyr: baseball, Yearly batting records for all major league baseball players
RedAmber::DataFrame : 21699 x 22 Vectors
Vectors : 19 numeric, 3 strings
#  key    type   level data_preview
1  :id    string  1228 ["ansonca01", "forceda01", "mathebo01", "startjo01", "suttoez01", ... ]
2  :year  uint16   137 [1871, 1871, 1871, 1871, 1871, ... ]
3  :stint uint8      4 {1=>19808, 2=>1775, 3=>111, 4=>5}
4  :team  string   132 ["RC1", "WS3", "FW1", "NY2", "CL1", ... ]
5  :lg    string     7 ["", "", "", "", "", ... ]
6  :g     uint8    166 [25, 32, 19, 33, 29, ... ]
7  :ab    uint16   687 [120, 162, 89, 161, 128, ... ]
8  :r     uint8    165 [29, 45, 15, 35, 35, ... ]
9  :h     uint16   245 [39, 45, 24, 58, 45, ... ]
10 :X2b   uint8     62 [11, 9, 3, 5, 3, ... ]
11 :X3b   uint8     29 [3, 4, 1, 1, 7, ... ]
12 :hr    uint8     65 [0, 0, 0, 1, 3, ... ]
13 :rbi   uint8    171 [16, 29, 10, 34, 23, ... ], 12 nils
14 :sb    uint8    105 [6, 8, 2, 4, 3, ... ], 250 nils
15 :cs    uint8     36 [2, 0, 1, 2, 1, ... ], 4525 nils
16 :bb    uint8    154 [2, 4, 2, 3, 1, ... ]
17 :so    uint8    176 [1, 0, 0, 0, 0, ... ], 1305 nils
18 :ibb   uint8     45 [nil, nil, nil, nil, nil, ... ], 7528 nils
19 :hbp   uint8     37 [nil, nil, nil, nil, nil, ... ], 377 nils
20 :sh    uint8     49 [nil, nil, nil, nil, nil, ... ], 960 nils
 ... 2 more Vectors ...
Rdatasets: pscl: AustralianElections, elections to Australian House of Representatives, 1949-2016
RedAmber::DataFrame : 27 x 19 Vectors
Vectors : 18 numeric, 1 temporal
#  key          type   level data_preview
1  :date        date64    27 [#<DateTime: 1949-12-10T09:00:00+09:00 ((2433261j,0s,0n),+32400s,2299161j)>, #<DateTime: 1951-04-28T09:00:00+09:00 ((2433765j,0s,0n),+32400s,2299161j)>, ... ]
2  :Seats       uint8      8 [121, 121, 122, 122, 122, ... ]
3  :Uncontested uint8      4 {0=>24, 3=>1, 7=>1, 10=>1}
4  :ALPSeats    uint8     24 [47, 52, 57, 47, 45, ... ]
5  :LPSeats     uint8     22 [55, 52, 47, 57, 58, ... ]
6  :NPSeats     uint8     12 [19, 17, 17, 18, 19, ... ]
7  :OtherSeats  uint8      5 {0=>16, 1=>3, 2=>2, 5=>4, 3=>2}
8  :ALP         double    27 [45.98, 47.63, 50.03, 44.63, 42.81, ... ]
9  :ALP2PP      double    25 [49.0, 49.3, 50.7, 45.8, 45.9, ... ]
10 :LP          double    26 [39.39, 40.62, 38.31, 39.73, 37.23, ... ]
11 :NP          double    27 [10.87, 9.72, 8.52, 7.9, 9.32, ... ]
12 :DLP         double    18 [0.0, 0.0, 0.0, 5.17, 9.41, ... ]
13 :Dem         double    15 [0.0, 0.0, 0.0, 0.0, 0.0, ... ]
14 :Green       double     9 [nil, nil, nil, nil, nil, ... ], 19 nils
15 :Hanson      double     5 {0.0=>23, 8.43=>1, 4.34=>1, 0.26=>1, 1.29=>1}
16 :Com         double     3 {0.0=>24, 1.0=>1, 1.2=>2}
17 :AP          double     5 {0.0=>23, 0.88=>1, 2.42=>1, 2.33=>1, 0.43=>1}
18 :Informal    double    27 [1.99, 1.9, 1.35, 2.88, 2.87, ... ]
19 :Turnout     double    26 [95.97, 96.0, 96.09, 95.0, 95.48, ... ]
Rdatasets: pscl: ca2006, California Congressional Districts in 2006
RedAmber::DataFrame : 53 x 13 Vectors
Vectors : 9 numeric, 4 strings
#  key        type   level data_preview
1  :district  uint8     53 [1, 2, 3, 4, 5, ... ]
2  :D         uint32    53 [111650, 54829, 72815, 97705, 89119, ... ], 1 nil
3  :R         uint32    47 [49663, 108002, 114155, 105525, 29824, ... ], 7 nils
4  :Other     uint16    30 [7850, 5613, 5193, 10754, 7110, ... ], 24 nils
5  :IncParty  string     2 {"D"=>33, "R"=>20}
6  :IncName   string    50 ["Thompson", "Herger", "Lungren", "Doolittle", "Matsui", ... ], 2 nils
7  :open      string     2 {"FALSE"=>51, "TRUE"=>2}
8  :contested string     2 {"TRUE"=>45, "FALSE"=>8}
9  :Bush2004  uint32    53 [111754, 173528, 176512, 216838, 77788, ... ]
10 :Kerry2004 uint32    53 [173926, 102254, 123671, 132267, 125378, ... ]
11 :Other2004 uint16    53 [5508, 3980, 2936, 4119, 2172, ... ]
12 :Bush2000  uint32    53 [98506, 150196, 142946, 172169, 66011, ... ]
13 :Gore2000  uint32    53 [131376, 81861, 107690, 104437, 113987, ... ]
Rdatasets: pscl: politicalInformation, Interviewer ratings of respondent levels of political information
RedAmber::DataFrame : 1807 x 8 Vectors
Vectors : 3 numeric, 5 strings
# key            type   level data_preview
1 :y             string     6 ["Fairly High", "Average", "Very High", "Average", "Fairly High", ... ], 7 nils
2 :collegeDegree string     2 {"Yes"=>724, "No"=>1083}
3 :female        string     2 {"No"=>790, "Yes"=>1017}
4 :age           uint8     80 [49, 35, 57, 63, 40, ... ], 9 nils
5 :homeOwn       string     2 {"Yes"=>1205, "No"=>602}
6 :govt          string     2 {"No"=>1596, "Yes"=>211}
7 :length        double  1432 [58.4000015258789, 46.1500015258789, 89.5199966430664, 92.629997253418, 58.8499984741211, ... ], 8 nils
8 :id            uint8    115 [1, 2, 3, 4, 4, ... ]
Rdatasets: pscl: state.info, information about the American states needed for U.S. Congress
RedAmber::DataFrame : 51 x 3 Vectors
Vectors : 2 numeric, 1 string
# key    type   level data_preview
1 :icpsr uint8     51 [1, 2, 3, 4, 5, ... ]
2 :state string    51 ["Connecticut", "Maine", "Massachusetts", "New Hampshire", "Rhode Island", ... ]
3 :year  uint16    35 [1788, 1820, 1788, 1788, 1790, ... ], 1 nil
Rdatasets: psych: bfi, 25 Personality items representing 5 factors
RedAmber::DataFrame : 2800 x 28 Vectors
Vectors : 28 numeric
#  key        type  level data_preview
1  :A1        uint8     7 [2, 2, 5, 4, 2, ... ], 16 nils
2  :A2        uint8     7 [4, 4, 4, 4, 3, ... ], 27 nils
3  :A3        uint8     7 [3, 5, 5, 6, 3, ... ], 26 nils
4  :A4        uint8     7 [4, 2, 4, 5, 4, ... ], 19 nils
5  :A5        uint8     7 [4, 5, 4, 5, 5, ... ], 16 nils
6  :C1        uint8     7 [2, 5, 4, 4, 4, ... ], 21 nils
7  :C2        uint8     7 [3, 4, 5, 4, 4, ... ], 24 nils
8  :C3        uint8     7 [3, 4, 4, 3, 5, ... ], 20 nils
9  :C4        uint8     7 [4, 3, 2, 5, 3, ... ], 26 nils
10 :C5        uint8     7 [4, 4, 5, 5, 2, ... ], 16 nils
11 :E1        uint8     7 [3, 1, 2, 5, 2, ... ], 23 nils
12 :E2        uint8     7 [3, 1, 4, 3, 2, ... ], 16 nils
13 :E3        uint8     7 [3, 6, 4, 4, 5, ... ], 25 nils
14 :E4        uint8     7 [4, 4, 4, 4, 4, ... ], 9 nils
15 :E5        uint8     7 [4, 3, 5, 4, 5, ... ], 21 nils
16 :N1        uint8     7 [3, 3, 4, 2, 2, ... ], 22 nils
17 :N2        uint8     7 [4, 3, 5, 5, 3, ... ], 21 nils
18 :N3        uint8     7 [2, 3, 4, 2, 4, ... ], 11 nils
19 :N4        uint8     7 [2, 5, 2, 4, 4, ... ], 36 nils
20 :N5        uint8     7 [3, 5, 3, 1, 3, ... ], 29 nils
 ... 8 more Vectors ...
Rdatasets: psych: sat.act, 3 Measures of ability: SATV, SATQ, ACT
RedAmber::DataFrame : 700 x 6 Vectors
Vectors : 6 numeric
# key        type   level data_preview
1 :gender    uint8      2 {2=>453, 1=>247}
2 :education uint8      6 [3, 3, 3, 4, 2, ... ]
3 :age       uint8     48 [19, 23, 20, 27, 33, ... ]
4 :ACT       uint8     23 [24, 35, 21, 26, 31, ... ]
5 :SATV      uint16    70 [500, 600, 480, 550, 600, ... ]
6 :SATQ      uint16    73 [500, 500, 470, 520, 550, ... ], 13 nils
Rdatasets: ratdat: complete, Complete survey data.
RedAmber::DataFrame : 35549 x 13 Vectors
Vectors : 7 numeric, 6 strings
#  key              type   level data_preview
1  :record_id       uint16 35549 [1, 2, 3, 4, 5, ... ]
2  :month           uint8     12 [7, 7, 7, 7, 7, ... ]
3  :day             uint8     31 [16, 16, 16, 16, 16, ... ]
4  :year            uint16    26 [1977, 1977, 1977, 1977, 1977, ... ]
5  :plot_id         uint8     24 [2, 3, 2, 7, 3, ... ]
6  :species_id      string    49 ["NL", "NL", "DM", "DM", "DM", ... ]
7  :sex             string     3 {"M"=>17348, "F"=>15690, ""=>2511}
8  :hindfoot_length uint8     57 [32, 33, 37, 36, 35, ... ], 4111 nils
9  :weight          uint16   256 [nil, nil, nil, nil, nil, ... ], 3266 nils
10 :genus           string    27 ["Neotoma", "Neotoma", "Dipodomys", "Dipodomys", "Dipodomys", ... ], 763 nils
11 :species         string    41 ["albigula", "albigula", "merriami", "merriami", "merriami", ... ], 763 nils
12 :taxa            string     5 {"Rodent"=>34247, nil=>763, "Rabbit"=>75, "Bird"=>450, "Reptile"=>14}
13 :plot_type       string     5 {"Control"=>15660, "Long-term Krat Exclosure"=>5259, "Rodent Exclosure"=>4744, "Spectab exclosure"=>3931, "Short-term Krat Exclosure"=>5955}
Rdatasets: ratdat: complete_old, Complete survey data from 1977 to 1989.
RedAmber::DataFrame : 16878 x 13 Vectors
Vectors : 7 numeric, 6 strings
#  key              type   level data_preview
1  :record_id       uint16 16878 [1, 2, 3, 4, 5, ... ]
2  :month           uint8     12 [7, 7, 7, 7, 7, ... ]
3  :day             uint8     31 [16, 16, 16, 16, 16, ... ]
4  :year            uint16    13 [1977, 1977, 1977, 1977, 1977, ... ]
5  :plot_id         uint8     24 [2, 3, 2, 7, 3, ... ]
6  :species_id      string    36 ["NL", "NL", "DM", "DM", "DM", ... ]
7  :sex             string     3 {"M"=>8260, "F"=>7318, ""=>1300}
8  :hindfoot_length uint8     52 [32, 33, 37, 36, 35, ... ], 2733 nils
9  :weight          uint16   253 [nil, nil, nil, nil, nil, ... ], 1692 nils
10 :genus           string    24 ["Neotoma", "Neotoma", "Dipodomys", "Dipodomys", "Dipodomys", ... ], 357 nils
11 :species         string    31 ["albigula", "albigula", "merriami", "merriami", "merriami", ... ], 357 nils
12 :taxa            string     5 {"Rodent"=>16148, nil=>357, "Rabbit"=>69, "Bird"=>300, "Reptile"=>4}
13 :plot_type       string     5 {"Control"=>7213, "Long-term Krat Exclosure"=>2019, "Rodent Exclosure"=>2764, "Spectab exclosure"=>1907, "Short-term Krat Exclosure"=>2975}
Rdatasets: ratdat: surveys, Survey data.
RedAmber::DataFrame : 35549 x 9 Vectors
Vectors : 7 numeric, 2 strings
# key              type   level data_preview
1 :record_id       uint16 35549 [1, 2, 3, 4, 5, ... ]
2 :month           uint8     12 [7, 7, 7, 7, 7, ... ]
3 :day             uint8     31 [16, 16, 16, 16, 16, ... ]
4 :year            uint16    26 [1977, 1977, 1977, 1977, 1977, ... ]
5 :plot_id         uint8     24 [2, 3, 2, 7, 3, ... ]
6 :species_id      string    49 ["NL", "NL", "DM", "DM", "DM", ... ]
7 :sex             string     3 {"M"=>17348, "F"=>15690, ""=>2511}
8 :hindfoot_length uint8     57 [32, 33, 37, 36, 35, ... ], 4111 nils
9 :weight          uint16   256 [nil, nil, nil, nil, nil, ... ], 3266 nils
Rdatasets: reshape2: smiths, Demo data describing the Smiths.
RedAmber::DataFrame : 2 x 5 Vectors
Vectors : 4 numeric, 1 string
# key      type   level data_preview
1 :subject string     2 ["John Smith", "Mary Smith"]
2 :time    uint8      1 {1=>2}
3 :age     uint8      2 [33, nil], 1 nil
4 :weight  uint8      2 [90, nil], 1 nil
5 :height  double     2 [1.87, 1.54]
Rdatasets: robustbase: airmay, Air Quality Data
RedAmber::DataFrame : 31 x 4 Vectors
Vectors : 4 numeric
# key type   level data_preview
1 :X1 uint16    28 [190, 118, 149, 313, nil, ... ], 4 nils
2 :X2 double    18 [7.4, 8.0, 12.6, 11.5, 14.3, ... ]
3 :X3 uint8     18 [67, 72, 74, 62, 56, ... ]
4 :Y  uint8     22 [41, 36, 12, 18, nil, ... ], 5 nils
Rdatasets: rpart: car.test.frame, Automobile Data from 'Consumer Reports' 1990
RedAmber::DataFrame : 60 x 8 Vectors
Vectors : 6 numeric, 2 strings
# key          type   level data_preview
1 :Price       uint16    58 [8895, 7402, 6319, 6635, 6599, ... ]
2 :Country     string     8 ["USA", "USA", "Korea", "Japan/USA", "Japan", ... ]
3 :Reliability uint8      6 [4, 2, 4, 5, 5, ... ], 11 nils
4 :Mileage     uint8     18 [33, 33, 37, 32, 32, ... ]
5 :Type        string     6 ["Small", "Small", "Small", "Small", "Small", ... ]
6 :Weight      uint16    55 [2560, 2345, 1845, 2260, 2440, ... ]
7 :"Disp."     uint16    32 [97, 114, 81, 91, 113, ... ]
8 :HP          uint8     37 [113, 90, 63, 92, 103, ... ]
Rdatasets: rpart: cu.summary, Automobile Data from 'Consumer Reports' 1990
RedAmber::DataFrame : 117 x 5 Vectors
Vectors : 2 numeric, 3 strings
# key          type   level data_preview
1 :Price       uint16   112 [11950, 6851, 6995, 8895, 7402, ... ]
2 :Country     string    10 ["Japan", "Japan", "USA", "USA", "USA", ... ]
3 :Reliability string     6 ["Much better", nil, "Much worse", "better", "worse", ... ], 32 nils
4 :Mileage     uint8     19 [nil, nil, nil, 33, 33, ... ], 57 nils
5 :Type        string     6 ["Small", "Small", "Small", "Small", "Small", ... ]
Rdatasets: rpart: stagec, Stage C Prostate Cancer
RedAmber::DataFrame : 146 x 8 Vectors
Vectors : 7 numeric, 1 string
# key      type   level data_preview
1 :pgtime  double    84 [6.1, 9.4, 5.2, 3.2, 1.9, ... ]
2 :pgstat  uint8      2 {0=>92, 1=>54}
3 :age     uint8     28 [64, 62, 59, 62, 64, ... ]
4 :eet     uint8      3 {2=>108, 1=>36, nil=>2}
5 :g2      double   132 [10.26, nil, 9.99, 3.57, 22.56, ... ], 7 nils
6 :grade   uint8      4 {2=>59, 3=>79, 4=>6, 1=>2}
7 :gleason uint8      9 [4, 8, 7, 4, 8, ... ], 3 nils
8 :ploidy  string     3 {"diploid"=>67, "aneuploid"=>11, "tetraploid"=>68}
Rdatasets: sandwich: Investment, US Investment Data
RedAmber::DataFrame : 20 x 7 Vectors
Vectors : 7 numeric
# key         type   level data_preview
1 :GNP        double    20 [596.7, 637.7, 691.1, 756.0, 799.6, ... ]
2 :Investment double    20 [90.9, 97.4, 113.5, 125.7, 122.8, ... ]
3 :Price      double    20 [0.7167, 0.7277, 0.7436, 0.7676, 0.7906, ... ]
4 :Interest   double    19 [3.23, 3.55, 4.04, 4.5, 4.19, ... ]
5 :RealGNP    double    20 [832.565927166178, 876.322660436993, 929.397525551372, 984.887962480459, 1011.38375917025, ... ]
6 :RealInv    double    20 [126.83131017162, 133.84636526041, 152.635825712749, 163.757165190203, 155.325069567417, ... ]
7 :RealInt    double    20 [nil, 2.01518766568997, 1.85503366772021, 1.27245831091986, 1.19364773319437, ... ], 1 nil
Rdatasets: sandwich: PublicSchools, US Expenditures for Public Schools
RedAmber::DataFrame : 51 x 2 Vectors
Vectors : 2 numeric
# key          type   level data_preview
1 :Expenditure uint16    46 [275, 821, 339, 275, 387, ... ], 1 nil
2 :Income      uint16    50 [6247, 10851, 7374, 6183, 8850, ... ]
Rdatasets: sem: HS.data, Holizinger and Swineford's Data
RedAmber::DataFrame : 301 x 32 Vectors
Vectors : 30 numeric, 2 strings
#  key       type   level data_preview
1  :id       uint16   301 [1, 2, 3, 4, 5, ... ]
2  :Gender   string     2 {"Male"=>146, "Female"=>155}
3  :grade    uint8      2 {7=>235, 8=>66}
4  :agey     uint8      6 [13, 13, 13, 13, 12, ... ]
5  :agem     uint8     12 [1, 7, 1, 2, 2, ... ]
6  :school   string     2 {"Pasteur"=>156, "Grant-White"=>145}
7  :visual   uint8     35 [20, 32, 27, 32, 29, ... ]
8  :cubes    uint8     25 [31, 21, 21, 31, 19, ... ]
9  :paper    uint8     19 [12, 12, 12, 16, 12, ... ]
10 :flags    uint8     35 [3, 17, 15, 24, 7, ... ]
11 :general  uint8     57 [40, 34, 20, 42, 37, ... ]
12 :paragrap uint8     20 [7, 5, 3, 8, 8, ... ]
13 :sentence uint8     25 [23, 12, 7, 18, 16, ... ]
14 :wordc    uint8     31 [22, 22, 12, 21, 25, ... ]
15 :wordm    uint8     40 [9, 9, 3, 17, 18, ... ]
16 :addition uint8     97 [78, 87, 75, 69, 85, ... ]
17 :code     uint8     68 [74, 84, 49, 65, 63, ... ]
18 :counting uint8     84 [115, 125, 78, 106, 126, ... ]
19 :straight uint16   130 [229, 285, 159, 175, 213, ... ]
20 :wordr    uint8     52 [170, 184, 170, 181, 187, ... ]
 ... 12 more Vectors ...
Rdatasets: sem: Tests, Six Mental Tests
RedAmber::DataFrame : 32 x 6 Vectors
Vectors : 6 numeric
# key type  level data_preview
1 :x1 uint8    14 [23, 29, 14, 20, 25, ... ], 2 nils
2 :x2 uint8    16 [nil, 26, 21, 18, 26, ... ], 5 nils
3 :x3 uint8    16 [16, 23, nil, 17, 22, ... ], 4 nils
4 :y1 uint8    17 [15, 22, 15, 18, nil, ... ], 2 nils
5 :y2 uint8    16 [14, 18, 16, 21, 21, ... ], 1 nil
6 :y3 uint8    14 [16, 19, 18, 19, 26, ... ], 4 nils
Rdatasets: Stat2Data: AppleStock, Daily Price and Volume of Apple Stock
RedAmber::DataFrame : 66 x 4 Vectors
Vectors : 3 numeric, 1 string
# key     type   level data_preview
1 :Date   string    66 ["7/21/2016", "7/22/2016", "7/25/2016", "7/26/2016", "7/27/2016", ... ]
2 :Price  double    65 [99.43, 98.66, 97.34, 96.67, 102.95, ... ]
3 :Change double    61 [nil, -0.77, -1.32, -0.67, 6.28, ... ], 1 nil
4 :Volume double    66 [32.69, 28.218, 40.291, 53.455, 92.144, ... ]
Rdatasets: Stat2Data: CreditRisk, Overdrawn Checking Account?
RedAmber::DataFrame : 450 x 4 Vectors
Vectors : 4 numeric
# key        type  level data_preview
1 :Age       uint8     9 [19, 19, 19, 19, 19, ... ], 9 nils
2 :Sex       uint8     3 {1=>252, 0=>197, nil=>1}
3 :DaysDrink uint8    31 [3, 20, 6, 10, 0, ... ], 1 nil
4 :Overdrawn uint8     3 {0=>387, 1=>60, nil=>3}
Rdatasets: Stat2Data: Day1Survey, First Day Survey of Statistics Students
RedAmber::DataFrame : 43 x 13 Vectors
Vectors : 10 numeric, 3 strings
#  key          type   level data_preview
1  :Section     uint8      2 {1=>24, 2=>19}
2  :Class       string     6 ["Senior", "*", "Freshman", "Freshman", "N/A", ... ]
3  :Sex         string     2 {"F"=>17, "M"=>26}
4  :Distance    uint16    31 [400, 450, 3000, 100, 2000, ... ], 1 nil
5  :Height      uint8     15 [62, 61, 61, 72, 69, ... ]
6  :Handedness  string     3 {"Right"=>38, "Left"=>4, "Ambidextrous"=>1}
7  :Coins       double    26 [1.12, 29.0, 1.5, 0.07, 0.12, ... ]
8  :WhiteString uint8     18 [42, 45, 22, 40, 48, ... ]
9  :BlackString uint8     14 [6, 5, 4, 4, 7, ... ]
10 :Reading     double    20 [80.0, 100.0, 100.0, 50.0, 200.0, ... ]
11 :TV          double    15 [3.0, 10.0, 4.0, 25.0, 5.0, ... ]
12 :Pulse       uint8     17 [71, 78, 80, 63, 63, ... ]
13 :Texting     uint8     21 [3, 100, 2, 200, 100, ... ]
Rdatasets: Stat2Data: Faces, Facial Attractiveness of Men
RedAmber::DataFrame : 38 x 5 Vectors
Vectors : 5 numeric
# key              type   level data_preview
1 :MaxGripStrength double    29 [44.0, 58.0, 57.0, 48.0, 34.0, ... ]
2 :SHR             double    35 [1.352, 1.349, 1.431, 1.405, 1.307, ... ]
3 :Partners        uint8     12 [36, 4, 5, 6, 3, ... ]
4 :Attractive      double    20 [2.333, 2.375, 1.857, 2.125, 2.5, ... ]
5 :AgeFirstSex     uint8      8 [15, 15, 14, 18, 14, ... ], 7 nils
Rdatasets: Stat2Data: Goldenrod, Goldenrod Galls
RedAmber::DataFrame : 1055 x 9 Vectors
Vectors : 6 numeric, 3 strings
# key       type   level data_preview
1 :Gdiam03  double   203 [20.7, 21.7, 20.5, 15.0, 19.5, ... ], 293 nils
2 :Stdiam03 double    96 [3.0, 3.6, 3.5, 5.1, 3.9, ... ], 293 nils
3 :Wall03   double   119 [6.0, 7.3, 7.8, nil, 7.1, ... ], 460 nils
4 :Fate03   string     7 ["f", "f", "f", "e", "u", ... ]
5 :Gdiam04  double   162 [18.9, 23.1, 19.4, 21.8, 23.5, ... ], 2 nils
6 :Stdiam04 double    56 [3.0, 3.7, 3.9, 3.0, 3.5, ... ], 1 nil
7 :Wall04   double   106 [nil, 9.4, 6.6, 10.0, 9.2, ... ], 111 nils
8 :Fate04   string     6 ["e", "f", "b", "f", "f", ... ]
9 :Fly04    string     2 {"n"=>385, "y"=>670}
Rdatasets: Stat2Data: GrinnellHouses, House Sales in Grinnell, Iowa
RedAmber::DataFrame : 929 x 15 Vectors
Vectors : 14 numeric, 1 string
#  key          type   level data_preview
1  :Date        uint16   709 [16695, 16880, 16875, 16833, 16667, ... ]
2  :Address     string   806 ["1510 First Ave #112 ", "1020 Center St ", "918 Chatterton St ", "1023 & 1025 Spring St. ", "503 2nd Ave ", ... ]
3  :Bedrooms    uint8      9 [2, 3, 4, 3, 3, ... ]
4  :Baths       double    16 [1.0, 1.0, 1.0, 1.0, 1.0, ... ]
5  :SquareFeet  uint16   527 [1120, 1224, 1540, 1154, 1277, ... ], 18 nils
6  :LotSize     double   399 [nil, 0.172176309, nil, nil, 0.20661157, ... ], 188 nils
7  :YearBuilt   uint16   101 [1993, 1900, 1970, 1900, 1900, ... ]
8  :YearSold    uint16    11 [2005, 2006, 2006, 2006, 2005, ... ]
9  :MonthSold   uint8     12 [9, 3, 3, 2, 8, ... ]
10 :DaySold     uint8     31 [16, 20, 15, 1, 19, ... ]
11 :CostPerSqFt double   856 [6.25, 22.06, 18.18, 26.0, 24.08, ... ]
12 :OrigPrice   uint32   385 [17000, 35000, 54000, 65000, 35000, ... ]
13 :ListPrice   uint32   373 [10500, 35000, 47000, 49000, 35000, ... ]
14 :SalePrice   uint32   405 [7000, 27000, 28000, 30000, 30750, ... ]
15 :SPLPPct     double   593 [66.67, 77.14, 59.57, 61.22, 87.86, ... ]
Rdatasets: Stat2Data: Handwriting, Guess Author's Sex from Handwriting?
RedAmber::DataFrame : 204 x 8 Vectors
Vectors : 8 numeric
# key         type   level data_preview
1 :Individual uint8    204 [1, 2, 3, 4, 5, ... ], 1 nil
2 :Gender     uint8      3 {1=>112, 0=>91, nil=>1}
3 :Survey1    uint8     15 [72, 56, 68, 80, 76, ... ], 4 nils
4 :Survey2    uint8     15 [68, 68, 48, 80, 72, ... ], 6 nils
5 :FemaleID   double    18 [75.0, 41.7, 75.0, 83.3, 83.3, ... ], 1 nil
6 :MaleID     double    18 [69.2, 69.2, 61.5, 76.9, 69.2, ... ], 1 nil
7 :Both       uint8     17 [68, 48, 36, 76, 68, ... ], 9 nils
8 :DIFF       int8      17 [4, -12, 20, 0, 4, ... ], 9 nils
Rdatasets: Stat2Data: HawkTail2, Tail Lengths of Hawks (Unstacked)
RedAmber::DataFrame : 577 x 2 Vectors
Vectors : 2 numeric
# key      type   level data_preview
1 :Tail_RT uint16    69 [219, 221, 235, 230, 212, ... ]
2 :Tail_SS uint8     56 [157, 130, 164, 144, 136, ... ], 316 nils
Rdatasets: Stat2Data: Hoops, Grinnell College Basketball Games
RedAmber::DataFrame : 147 x 22 Vectors
Vectors : 21 numeric, 1 string
#  key       type   level data_preview
1  :Game     uint8    147 [1, 2, 3, 4, 5, ... ]
2  :Opp      string     9 ["Ripon", "Beloit", "Lake Forest", "Carroll", "Monmouth", ... ]
3  :Home     uint8      2 {1=>75, 0=>72}
4  :OppAtt   uint8     43 [67, 77, 37, 63, 52, ... ]
5  :GrAtt    uint8     53 [89, 93, 68, 89, 84, ... ]
6  :Gr3Att   uint8     51 [56, 45, 20, 71, 46, ... ]
7  :GrFT     uint8     43 [13, 54, 34, 37, 26, ... ]
8  :OppFT    uint8     45 [38, 50, 44, 57, 40, ... ]
9  :GrRB     uint8     36 [40, 45, 25, 49, 30, ... ]
10 :GrOR     uint8     28 [24, 28, 16, 27, 22, ... ]
11 :OppDR    uint8     28 [29, 28, 35, 27, 29, ... ]
12 :OppPoint uint8     69 [119, 135, 98, 116, 109, ... ]
13 :GrPoint  uint8     63 [107, 142, 83, 112, 107, ... ]
14 :GrAss    uint8     28 [24, 15, 2, 20, 17, ... ]
15 :OppTO    uint8     31 [28, 35, 35, 28, 30, ... ]
16 :GrTO     uint8     27 [33, 22, 19, 28, 15, ... ]
17 :GrBlocks uint8     11 [2, 1, 0, 1, 0, ... ]
18 :GrSteal  uint8     23 [23, 24, 4, 13, 21, ... ]
19 :X40Point uint8      3 {0=>132, 1=>14, nil=>1}
20 :X30Point uint8      2 {1=>57, 0=>90}
 ... 2 more Vectors ...
Rdatasets: Stat2Data: MathPlacement, Math Placement Exam Results
RedAmber::DataFrame : 2696 x 16 Vectors
Vectors : 14 numeric, 2 strings
#  key            type   level data_preview
1  :Student       uint16  2688 [625, 628, 629, 630, 634, ... ]
2  :Gender        uint8      3 {0=>314, 1=>266, nil=>2116}
3  :PSATM         uint8     47 [56, 57, nil, 53, nil, ... ], 1560 nils
4  :SATM          uint8     45 [56, nil, 62, nil, 64, ... ], 1460 nils
5  :ACTM          uint8     25 [25, 23, 27, 27, 31, ... ], 322 nils
6  :Rank          uint16   259 [1, 1, 42, 6, 72, ... ], 196 nils
7  :Size          uint16   623 [420, 85, 421, 75, 462, ... ], 179 nils
8  :GPAadj        uint8     23 [40, 40, 38, 38, 35, ... ], 20 nils
9  :PlcmtScore    int8      65 [23, 21, 20, 20, 19, ... ], 35 nils
10 :Recommends    string     9 ["R0", "R0", "R0", "R0", "R0", ... ]
11 :Course        uint16    11 [210, 117, 117, 117, 114, ... ]
12 :Grade         string    17 ["A", "A", "A-", "B", "A", ... ]
13 :RecTaken      uint8      2 {1=>1848, 0=>848}
14 :TooHigh       uint8      2 {0=>1162, 1=>1534}
15 :TooLow        uint8      2 {0=>2642, 1=>54}
16 :CourseSuccess uint8      3 {1=>1441, 0=>688, nil=>567}
Rdatasets: Stat2Data: MedGPA, GPA and Medical School Admission
RedAmber::DataFrame : 55 x 11 Vectors
Vectors : 9 numeric, 2 strings
#  key         type   level data_preview
1  :Accept     string     2 {"D"=>25, "A"=>30}
2  :Acceptance uint8      2 {0=>25, 1=>30}
3  :Sex        string     2 {"F"=>28, "M"=>27}
4  :BCPM       double    43 [3.59, 3.75, 3.24, 3.74, 3.53, ... ]
5  :GPA        double    40 [3.62, 3.84, 3.23, 3.69, 3.38, ... ]
6  :VR         uint8      8 [11, 12, 9, 12, 9, ... ]
7  :PS         uint8      9 [9, 13, 10, 11, 11, ... ]
8  :WS         uint8      8 [9, 8, 5, 7, 4, ... ], 1 nil
9  :BS         uint8      9 [9, 12, 9, 10, 11, ... ]
10 :MCAT       uint8     15 [38, 45, 33, 40, 35, ... ]
11 :Apps       uint8     17 [5, 3, 19, 5, 11, ... ]
Rdatasets: Stat2Data: NCbirths, North Carolina Birth Records
RedAmber::DataFrame : 1450 x 15 Vectors
Vectors : 13 numeric, 2 strings
#  key            type   level data_preview
1  :ID            uint16  1450 [1, 2, 3, 4, 5, ... ]
2  :Plural        uint8      3 {1=>1401, 2=>45, 3=>4}
3  :Sex           uint8      2 {1=>744, 2=>706}
4  :MomAge        uint8     30 [32, 32, 27, 27, 25, ... ]
5  :Weeks         uint8     25 [40, 37, 39, 39, 39, ... ], 1 nil
6  :Marital       uint8      2 {1=>950, 2=>500}
7  :RaceMom       uint8      7 [1, 1, 1, 1, 1, ... ]
8  :HispMom       string     6 ["N", "N", "N", "N", "N", ... ]
9  :Gained        uint8     76 [38, 34, 12, 15, 32, ... ], 40 nils
10 :Smoke         uint8      3 {0=>1236, 1=>209, nil=>5}
11 :BirthWeightOz uint8    131 [111, 116, 138, 136, 121, ... ]
12 :BirthWeightGm double   131 [3146.85, 3288.6, 3912.3, 3855.6, 3430.35, ... ]
13 :Low           uint8      2 {0=>1325, 1=>125}
14 :Premie        uint8      2 {0=>1259, 1=>191}
15 :MomRace       string     4 {"white"=>906, "hispanic"=>164, "black"=>332, "other"=>48}
Rdatasets: Stat2Data: Overdrawn, Overdrawn Checking Account?
RedAmber::DataFrame : 450 x 4 Vectors
Vectors : 4 numeric
# key        type  level data_preview
1 :Age       uint8     9 [19, 19, 19, 19, 19, ... ], 9 nils
2 :Sex       uint8     3 {1=>252, 0=>197, nil=>1}
3 :DaysDrink uint8    31 [3, 20, 6, 10, 0, ... ], 1 nil
4 :Overdrawn uint8     3 {0=>387, 1=>60, nil=>3}
Rdatasets: Stat2Data: Pines, Measurements of Pine Tree Seedlings
RedAmber::DataFrame : 1000 x 15 Vectors
Vectors : 15 numeric
#  key          type   level data_preview
1  :Row         uint8     44 [1, 1, 1, 1, 1, ... ]
2  :Col         uint8     30 [1, 2, 3, 4, 5, ... ]
3  :Hgt90       double    89 [nil, 14.0, 17.0, nil, 24.0, ... ], 182 nils
4  :Hgt96       double   330 [nil, 284.0, 387.0, nil, 294.0, ... ], 139 nils
5  :Diam96      double    70 [nil, 4.2, 7.4, nil, 3.9, ... ], 149 nils
6  :Grow96      double   179 [nil, 96.0, 110.0, nil, 70.0, ... ], 136 nils
7  :Hgt97       uint16   306 [nil, 362, 442, nil, 369, ... ], 135 nils
8  :Diam97      double   122 [nil, 6.6, 9.3, nil, 7.0, ... ], 139 nils
9  :"Spread.97" uint16   203 [nil, 162, 250, nil, 176, ... ], 136 nils
10 :Needles97   double    90 [nil, 66.0, 77.0, nil, 72.0, ... ], 135 nils
11 :Deer95      uint8      3 {nil=>129, 0=>662, 1=>209}
12 :Deer97      uint8      3 {nil=>135, 1=>92, 0=>773}
13 :Cover95     uint8      4 {0=>326, 2=>224, 1=>235, 3=>215}
14 :Fert        uint8      2 {0=>493, 1=>507}
15 :Spacing     uint8      2 {15=>414, 10=>586}
Rdatasets: Stat2Data: Political, Political Behavior of College Students
RedAmber::DataFrame : 59 x 9 Vectors
Vectors : 9 numeric
# key          type  level data_preview
1 :Year        uint8     4 {1=>17, 4=>11, 2=>18, 3=>13}
2 :Sex         uint8     2 {1=>28, 0=>31}
3 :Vote        uint8     4 {1=>14, 3=>33, 2=>8, 0=>4}
4 :Paper       uint8     5 {3=>23, 1=>7, 4=>15, 2=>10, 0=>4}
5 :Edit        uint8     2 {1=>33, 0=>26}
6 :TV          uint8     5 {0=>23, 3=>18, 1=>3, 4=>8, 2=>7}
7 :Ethics      uint8     4 {2=>26, 3=>19, 4=>11, 5=>3}
8 :Inform      uint8     5 {2=>13, 3=>30, 4=>10, 5=>4, 1=>2}
9 :Participate uint8     3 {0=>22, 1=>33, nil=>4}
Rdatasets: Stat2Data: Pollster08, 2008 U.S. Presidential Election Polls
RedAmber::DataFrame : 102 x 11 Vectors
Vectors : 7 numeric, 4 strings
#  key        type   level data_preview
1  :PollTaker string    34 ["Rasmussen", "Zogby", "Diageo/Hotline", "CBS", "CNN", ... ]
2  :PollDates string    56 ["8/28-30/08", "8/29-30/08", "8/29-31/08", "8/29-31/08", "8/29-31/08", ... ]
3  :MidDate   string    30 ["8/29", "8/30", "8/30", "8/30", "8/30", ... ]
4  :Days      uint8     30 [1, 2, 2, 2, 2, ... ]
5  :n         uint16    62 [3000, 2020, 805, 781, 927, ... ], 3 nils
6  :Pop       string     3 {"LV"=>58, "RV"=>38, "A"=>6}
7  :McCain    uint8     14 [46, 47, 39, 40, 48, ... ]
8  :Obama     uint8     13 [49, 45, 48, 48, 49, ... ]
9  :Margin    int8      17 [3, -2, 9, 8, 1, ... ]
10 :Charlie   uint8      2 {0=>38, 1=>64}
11 :Meltdown  uint8      2 {0=>52, 1=>50}
Rdatasets: Stat2Data: WeightLossIncentive, Do Financial Incentives Improve Weight Loss?
RedAmber::DataFrame : 38 x 3 Vectors
Vectors : 2 numeric, 1 string
# key         type   level data_preview
1 :WeightLoss double    29 [12.5, 12.0, 1.0, -5.0, 3.0, ... ], 2 nils
2 :Group      string     2 {"Control"=>19, "Incentive"=>19}
3 :Month7Loss int8      24 [-2, 7, 19, 0, -1, ... ], 5 nils
Rdatasets: Stat2Data: YouthRisk, Annual survey of health-risk youth behaviors
RedAmber::DataFrame : 13387 x 6 Vectors
Vectors : 6 numeric
# key                type  level data_preview
1 :"ride.alc.driver" uint8     2 {1=>4177, 0=>9210}
2 :female            uint8     3 {1=>6666, nil=>755, 0=>5966}
3 :grade             uint8     5 {10=>3299, nil=>67, 11=>3361, 9=>3249, 12=>3411}
4 :age4              uint8     6 [15, 18, nil, 17, 17, ... ], 54 nils
5 :smoke             uint8     3 {1=>6946, nil=>388, 0=>6053}
6 :DriverLicense     uint8     3 {0=>4308, 1=>9025, nil=>54}
Rdatasets: Stat2Data: YouthRisk2007, Riding with a Driver Who Has Been Drinking
RedAmber::DataFrame : 13387 x 6 Vectors
Vectors : 6 numeric
# key                type  level data_preview
1 :"ride.alc.driver" uint8     2 {1=>4177, 0=>9210}
2 :female            uint8     3 {1=>6666, nil=>755, 0=>5966}
3 :grade             uint8     5 {10=>3299, nil=>67, 11=>3361, 9=>3249, 12=>3411}
4 :age4              uint8     6 [15, 18, nil, 17, 17, ... ], 54 nils
5 :smoke             uint8     3 {1=>6946, nil=>388, 0=>6053}
6 :DriverLicense     uint8     3 {0=>4308, 1=>9025, nil=>54}
Rdatasets: Stat2Data: YouthRisk2009, Youth Risk Survey
RedAmber::DataFrame : 500 x 6 Vectors
Vectors : 3 numeric, 3 strings
# key          type   level data_preview
1 :Sleep       string     8 ["", "8 hours", "5 hours", "5 hours", "7 hours", ... ]
2 :Sleep7      uint8      3 {nil=>54, 1=>296, 0=>150}
3 :SmokeLife   string     3 {"No"=>271, "Yes"=>208, ""=>21}
4 :SmokeDaily  string     3 {""=>33, "Yes"=>40, "No"=>427}
5 :MarijuaEver uint8      3 {0=>310, 1=>175, nil=>15}
6 :Age         uint8      5 {16=>129, 17=>116, 18=>76, 15=>130, 14=>49}
Rdatasets: stevedata: anes_prochoice, Abortion Attitudes (ANES, 2012)
RedAmber::DataFrame : 5914 x 14 Vectors
Vectors : 13 numeric, 1 string
#  key          type   level data_preview
1  :version     string     1 {"ANES2012TimeSeries_version20140310"=>5914}
2  :caseid      uint16  5914 [1, 2, 3, 4, 5, ... ]
3  :health      uint8      4 {nil=>484, 0=>1712, 1=>1196, 2=>2522}
4  :fatal       uint8      4 {nil=>496, 2=>4107, 0=>557, 1=>754}
5  :incest      uint8      4 {nil=>524, 0=>1424, 1=>1186, 2=>2780}
6  :rape        uint8      4 {nil=>477, 0=>812, 2=>3917, 1=>708}
7  :bd          uint8      4 {nil=>510, 2=>2846, 1=>1217, 0=>1341}
8  :fin         uint8      4 {nil=>474, 0=>2976, 2=>1420, 1=>1044}
9  :sex         uint8      4 {nil=>474, 0=>4382, 2=>428, 1=>630}
10 :choice      uint8      4 {nil=>480, 2=>2242, 0=>2201, 1=>991}
11 :pid         uint8      4 {0=>2361, 1=>1845, nil=>319, 2=>1389}
12 :knowspeaker uint8      3 {nil=>404, 1=>2206, 0=>3304}
13 :addchoice   uint8     18 [nil, 6, nil, 11, 12, ... ], 638 nils
14 :lchoice     double   967 [nil, -0.567213023407521, -0.622893899215311, 0.319304228283107, 0.625579163506229, ... ], 440 nils
Rdatasets: stevedata: anes_vote84, Simple Data for a Simple Model of Individual Voter Turnout (ANES, 1984)
RedAmber::DataFrame : 2257 x 9 Vectors
Vectors : 8 numeric, 1 string
# key       type   level data_preview
1 :uid      uint16  2257 [1, 2, 3, 4, 5, ... ]
2 :stateabb string    31 ["FL", "GA", "GA", "NC", "OH", ... ], 268 nils
3 :vote     uint8      3 {0=>650, 1=>1356, nil=>251}
4 :age      uint8     75 [nil, 60, nil, nil, nil, ... ], 789 nils
5 :educ     uint8     11 [5, 10, 7, 5, 7, ... ], 14 nils
6 :female   uint8      2 {1=>1268, 0=>989}
7 :south    uint8      2 {1=>750, 0=>1507}
8 :polint   int8       4 {0=>1054, 1=>638, -1=>558, nil=>7}
9 :govrace  uint8      2 {0=>1957, 1=>300}
Rdatasets: stevedata: CFT15, Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate
RedAmber::DataFrame : 1390 x 9 Vectors
Vectors : 9 numeric
# key          type   level data_preview
1 :state       uint8     50 [1, 1, 1, 1, 1, ... ]
2 :year        uint16    49 [1914, 1916, 1922, 1926, 1928, ... ]
3 :vote        double  1252 [36.0975723266602, 45.4687461853027, 45.5982131958008, 48.4760627746582, 51.7468681335449, ... ], 93 nils
4 :margin      double  1352 [-7.688560962677, -3.92370820045471, -6.86866044998169, -27.6680564880371, -8.25696849822998, ... ]
5 :class       uint8      3 {3=>487, 1=>455, 2=>448}
6 :termshouse  uint8     13 [3, 0, 0, 0, 0, ... ], 282 nils
7 :termssenate uint8     20 [6, 4, 7, 3, 1, ... ], 282 nils
8 :population  double  1333 [1233000.0, 1294000.0, 1431000.0, 1531000.0, 1577000.0, ... ]
9 :treatment   uint8      2 {0=>640, 1=>750}
Rdatasets: stevedata: DST, Casualties/Fatalities in the U.S. for Drunk-Driving, Suicide, and Terrorism
RedAmber::DataFrame : 49 x 5 Vectors
Vectors : 5 numeric
# key        type   level data_preview
1 :year      uint16    49 [1970, 1971, 1972, 1973, 1974, ... ]
2 :nkill     uint16    27 [35, 24, 10, 45, 24, ... ]
3 :terrtotal uint16    37 [197, 83, 45, 78, 86, ... ]
4 :suicides  uint16    39 [nil, nil, nil, nil, nil, ... ], 11 nils
5 :ddfat     uint16    38 [nil, nil, nil, nil, nil, ... ], 12 nils
Rdatasets: stevedata: eq_passengercars, Export Quality Data for Passenger Cars, 1963-2014
RedAmber::DataFrame : 60424 x 6 Vectors
Vectors : 3 numeric, 3 strings
# key       type   level data_preview
1 :country  string   166 ["Australia", "Australia", "Australia", "Australia", "Australia", ... ]
2 :ccode    uint16   166 [900, 900, 900, 900, 900, ... ], 364 nils
3 :category string     7 ["Export Quality Index", "Export quality 95 percent interval - lower bound", "Export quality 95 percent interval - upper bound", "Unit value of exports", "Unit value 95 percent interval - lower bound", ... ]
4 :type     string     1 {"51. Transport equipment, Passenger cars"=>60424}
5 :year     uint16    52 [1963, 1963, 1963, 1963, 1963, ... ]
6 :value    double 17734 [1.0516917, 0.90175551, 1.0537851, 0.77125996, 0.52688563, ... ], 18515 nils
Rdatasets: stevedata: ESS9GB, British Attitudes Toward Immigration (2018-19)
RedAmber::DataFrame : 1905 x 19 Vectors
Vectors : 14 numeric, 3 strings, 2 temporal
#  key        type   level data_preview
1  :name      string     1 {"ESS9e01_2"=>1905}
2  :essround  uint8      1 {9=>1905}
3  :edition   double     1 {1.2=>1905}
4  :idno      uint16  1905 [39, 135, 142, 146, 164, ... ]
5  :cntry     string     1 {"GB"=>1905}
6  :region    string    12 ["West Midlands (England)", "South West (England)", "South East (England)", "Northern Ireland", "Northern Ireland", ... ]
7  :brncntr   uint8      1 {1=>1905}
8  :stintrvw  date64   158 [#<DateTime: 2018-09-11T09:00:00+09:00 ((2458373j,0s,0n),+32400s,2299161j)>, #<DateTime: 2018-09-07T09:00:00+09:00 ((2458369j,0s,0n),+32400s,2299161j)>, ... ]
9  :endintrvw date64   159 [#<DateTime: 2018-09-11T09:00:00+09:00 ((2458373j,0s,0n),+32400s,2299161j)>, #<DateTime: 2018-09-07T09:00:00+09:00 ((2458369j,0s,0n),+32400s,2299161j)>, ... ]
10 :imbgeco   uint8     12 [8, 0, 5, 5, 5, ... ], 18 nils
11 :imueclt   uint8     12 [8, 2, 4, 7, 5, ... ], 28 nils
12 :imwbcnt   uint8     12 [8, 5, 5, 7, 3, ... ], 29 nils
13 :immigsent uint8     32 [24, 7, 14, 19, 13, ... ], 55 nils
14 :agea      uint8     77 [90, 61, 62, 66, 68, ... ], 12 nils
15 :female    uint8      2 {0=>874, 1=>1031}
16 :eduyrs    uint8     29 [9, 10, 10, 15, 12, ... ], 12 nils
17 :uempla    uint8      2 {0=>1867, 1=>38}
18 :hinctnta  uint8     11 [nil, 7, 2, 5, 3, ... ], 290 nils
19 :lrscale   uint8     12 [5, 5, 3, 6, nil, ... ], 179 nils
Rdatasets: stevedata: ESSBE5, Trust in the Police in Belgium (European Social Survey, Round 5)
RedAmber::DataFrame : 1704 x 10 Vectors
Vectors : 9 numeric, 1 string
#  key       type   level data_preview
1  :essround uint8      1 {5=>1704}
2  :edition  double     1 {3.4=>1704}
3  :idno     uint32  1704 [100102, 100106, 100202, 100204, 100209, ... ]
4  :cntry    string     1 {"BE"=>1704}
5  :trstplc  uint8     12 [7, 4, 10, 5, 8, ... ], 3 nils
6  :agea     uint8     78 [22, 43, 19, 23, 58, ... ]
7  :female   uint8      2 {0=>820, 1=>884}
8  :eduyrs   uint8     29 [15, 15, 13, 15, 15, ... ], 36 nils
9  :hincfel  uint8      5 {2=>691, 3=>267, 1=>659, 4=>80, nil=>7}
10 :plcpvcr  uint8     12 [5, 5, 5, 4, 8, ... ], 14 nils
Rdatasets: stevedata: gss_abortion, Abortion Opinions in the General Social Survey
RedAmber::DataFrame : 64814 x 18 Vectors
Vectors : 15 numeric, 3 strings
#  key          type   level data_preview
1  :id          uint16  4510 [1, 2, 3, 4, 5, ... ]
2  :year        uint16    32 [1972, 1972, 1972, 1972, 1972, ... ]
3  :age         uint8     73 [23, 70, 48, 27, 61, ... ], 228 nils
4  :race        string     3 {"White"=>52033, "Black"=>9187, "Other"=>3594}
5  :sex         string     2 {"Female"=>36200, "Male"=>28614}
6  :hispaniccat uint8     30 [nil, nil, nil, nil, nil, ... ], 38164 nils
7  :educ        uint8     22 [16, 10, 12, 17, 12, ... ], 177 nils
8  :partyid     string     9 ["Ind,Near Dem", "Not Str Democrat", "Independent", "Not Str Democrat", "Strong Democrat", ... ], 418 nils
9  :relactiv    uint8     12 [nil, nil, nil, nil, nil, ... ], 45581 nils
10 :abany       uint8      3 {nil=>28020, 1=>15234, 0=>21560}
11 :abdefect    uint8      3 {1=>35176, 0=>8976, nil=>20662}
12 :abnomore    uint8      3 {1=>19662, 0=>24410, nil=>20742}
13 :abhlth      uint8      3 {1=>39749, nil=>20454, 0=>4611}
14 :abpoor      uint8      3 {1=>20790, 0=>23233, nil=>20791}
15 :abrape      uint8      3 {1=>35746, nil=>20892, 0=>8176}
16 :absingle    uint8      3 {1=>19436, 0=>24584, nil=>20794}
17 :pid         uint8      8 [2, 1, 3, 1, 0, ... ], 1490 nils
18 :hispanic    uint8      3 {nil=>38164, 0=>23555, 1=>3095}
Rdatasets: stevedata: gss_spending, Attitudes Toward National Spending in the General Social Survey (2018)
RedAmber::DataFrame : 2348 x 33 Vectors
Vectors : 33 numeric
#  key        type   level data_preview
1  :year      uint16     1 {2018=>2348}
2  :id        uint16  2348 [1, 2, 3, 4, 5, ... ]
3  :age       uint8     73 [43, 74, 42, 63, 71, ... ], 7 nils
4  :sex       uint8      2 {0=>1052, 1=>1296}
5  :educ      uint8     22 [14, 10, 16, 16, 18, ... ], 3 nils
6  :degree    uint8      5 {2=>196, 1=>1178, 3=>465, 4=>247, 0=>262}
7  :race      uint8      3 {1=>1693, 2=>385, 3=>270}
8  :rincom16  uint8     27 [nil, nil, 22, 23, nil, ... ], 985 nils
9  :partyid   uint8      9 [5, 2, 4, 2, 6, ... ], 33 nils
10 :polviews  uint8      8 [6, nil, 5, 4, 7, ... ], 101 nils
11 :xnorcsiz  uint8     10 [6, 6, 6, 6, 6, ... ]
12 :news      uint8      6 [4, nil, 5, 1, nil, ... ], 789 nils
13 :wrkstat   uint8      9 [3, 5, 1, 1, 5, ... ], 2 nils
14 :natspac   int8       4 {-1=>549, 0=>1043, 1=>494, nil=>262}
15 :natenvir  int8       4 {0=>539, 1=>1553, -1=>184, nil=>72}
16 :natheal   int8       4 {1=>1641, 0=>479, -1=>174, nil=>54}
17 :natcity   int8       4 {1=>815, 0=>798, -1=>465, nil=>270}
18 :natcrime  int8       4 {1=>1386, nil=>99, 0=>664, -1=>199}
19 :natdrug   int8       4 {1=>1554, nil=>87, 0=>500, -1=>207}
20 :nateduc   int8       4 {1=>1789, 0=>403, -1=>134, nil=>22}
 ... 13 more Vectors ...
Rdatasets: stevedata: gss_wages, The Gender Pay Gap in the General Social Survey
RedAmber::DataFrame : 61697 x 11 Vectors
Vectors : 6 numeric, 5 strings
#  key         type   level data_preview
1  :year       uint16    30 [1974, 1974, 1974, 1974, 1974, ... ]
2  :realrinc   double   603 [4935.0, 43178.0, nil, nil, 18505.0, ... ], 23810 nils
3  :age        uint8     73 [21, 41, 83, 69, 58, ... ], 219 nils
4  :occ10      uint16   539 [5620, 2040, nil, nil, 5820, ... ], 3561 nils
5  :occrecode  string    12 ["Office and Administrative Support", "Professional", nil, nil, "Office and Administrative Support", ... ], 3561 nils
6  :prestg10   uint8     62 [25, 66, nil, nil, 37, ... ], 4186 nils
7  :childs     uint8     10 [0, 3, 2, 2, 0, ... ], 189 nils
8  :wrkstat    string     9 ["School", "Full-Time", "Housekeeper", "Housekeeper", "Full-Time", ... ], 21 nils
9  :gender     string     2 {"Male"=>27106, "Female"=>34591}
10 :educcat    string     6 ["High School", "Bachelor", "Less Than High School", "Less Than High School", "High School", ... ], 135 nils
11 :maritalcat string     6 ["Married", "Married", "Widowed", "Widowed", "Never Married", ... ], 27 nils
Rdatasets: stevedata: mvprod, Motor Vehicle Production by Country, 1950-2019
RedAmber::DataFrame : 1206 x 3 Vectors
Vectors : 2 numeric, 1 string
# key      type   level data_preview
1 :country string    67 ["Algeria", "Argentina", "Australia", "Austria", "Azerbaijan", ... ]
2 :year    uint16    18 [1950, 1950, 1950, 1950, 1950, ... ]
3 :value   uint32   800 [nil, nil, 58000, nil, nil, ... ], 307 nils
Rdatasets: stevedata: nesarc_drinkspd, The Usual Daily Drinking Habits of Americans (NESARC, 2001-2)
RedAmber::DataFrame : 43093 x 8 Vectors
Vectors : 8 numeric
# key        type   level data_preview
1 :idnum     uint16 43093 [1, 2, 3, 4, 5, ... ]
2 :ethrace2a uint8      5 {5=>8308, 2=>8245, 1=>24507, 4=>1332, 3=>701}
3 :region    uint8      4 {4=>9737, 3=>16156, 2=>8991, 1=>8209}
4 :age       uint8     81 [23, 28, 81, 18, 36, ... ]
5 :sex       uint8      2 {0=>18518, 1=>24575}
6 :marital   uint8      6 [6, 1, 3, 6, 1, ... ]
7 :educ      uint8      4 {2=>12547, 1=>7849, 4=>10034, 3=>12663}
8 :s2aq8b    uint8     31 [nil, 1, nil, nil, nil, ... ], 16147 nils
Rdatasets: stevedata: recessions, United States Recessions, 1855-present
RedAmber::DataFrame : 35 x 8 Vectors
Vectors : 6 numeric, 2 temporal
# key       type   level data_preview
1 :peak     date64    35 [nil, #<DateTime: 1857-06-01T09:00:00+09:00 ((2399467j,0s,0n),+32400s,2299161j)>, ... ]
2 :trough   date64    35 [#<DateTime: 1854-12-01T09:00:00+09:00 ((2398554j,0s,0n),+32400s,2299161j)>, #<DateTime: 1858-12-01T09:00:00+09:00 ((2400015j,0s,0n),+32400s,2299161j)>, ... ]
3 :peakq    uint8      5 {nil=>2, 2=>8, 3=>10, 1=>9, 4=>6}
4 :troughq  uint8      5 {4=>12, 3=>5, 1=>8, 2=>9, nil=>1}
5 :p2t      uint8     17 [nil, 18, 8, 32, 18, ... ], 2 nils
6 :prev_t2p uint8     27 [nil, 30, 22, 46, 18, ... ], 1 nil
7 :tfpt     uint8     27 [nil, 48, 30, 78, 36, ... ], 2 nils
8 :pfpp     uint8     29 [nil, nil, 40, 54, 50, ... ], 2 nils
Rdatasets: stevedata: SBCD, Systemic Banking Crises Database II
RedAmber::DataFrame : 547 x 4 Vectors
Vectors : 2 numeric, 2 strings
# key      type   level data_preview
1 :country string   157 ["Albania", "Albania", "Albania", "Albania", "Algeria", ... ]
2 :type    string     4 {"banking"=>151, "currency"=>240, "debt"=>80, "debtrestructuring"=>76}
3 :year    uint16    46 [1994, 1997, 1990, 1992, 1990, ... ], 1 nil
4 :month   uint8     13 [nil, 1, nil, nil, nil, ... ], 324 nils
Rdatasets: stevedata: sealevels, Global Average Absolute Sea Level Change, 1880–2015
RedAmber::DataFrame : 136 x 5 Vectors
Vectors : 5 numeric
# key          type   level data_preview
1 :year        uint16   136 [1880, 1881, 1882, 1883, 1884, ... ]
2 :adjlev      double   129 [0.0, 0.220472441, -0.440944881, -0.232283464, 0.590551181, ... ], 2 nils
3 :lb          double   130 [-0.952755905, -0.732283464, -1.346456692, -1.129921259, -0.283464567, ... ], 2 nils
4 :ub          double   128 [0.952755905, 1.173228345, 0.464566929, 0.66535433, 1.464566928, ... ], 2 nils
5 :adjlev_noaa double    24 [nil, nil, nil, nil, nil, ... ], 113 nils
Rdatasets: stevedata: sugar_price, IMF Primary Commodity Price Data for Sugar
RedAmber::DataFrame : 1316 x 3 Vectors
Vectors : 1 numeric, 1 string, 1 temporal
# key       type   level data_preview
1 :date     date64   499 [#<DateTime: 1980-01-01T09:00:00+09:00 ((2444240j,0s,0n),+32400s,2299161j)>, #<DateTime: 1980-02-01T09:00:00+09:00 ((2444271j,0s,0n),+32400s,2299161j)>, ... ]
2 :category string     3 {"United States"=>499, "Global"=>499, "Europe"=>318}
3 :value    double  1075 [nil, nil, nil, nil, nil, ... ], 240 nils
Rdatasets: stevedata: thatcher_approval, Margaret Thatcher Satisfaction Ratings, 1980-1990
RedAmber::DataFrame : 125 x 9 Vectors
Vectors : 7 numeric, 1 string, 1 temporal
# key           type   level data_preview
1 :year         uint16    11 [1980, 1980, 1980, 1980, 1980, ... ]
2 :poll_date    string    97 ["January", "February", "March", "April", "June", ... ]
3 :date         date64   125 [#<DateTime: 1980-01-01T09:00:00+09:00 ((2444240j,0s,0n),+32400s,2299161j)>, #<DateTime: 1980-02-01T09:00:00+09:00 ((2444271j,0s,0n),+32400s,2299161j)>, ... ]
4 :govt_sat     uint8     35 [30, 26, 28, 33, 32, ... ], 1 nil
5 :govt_dis     uint8     37 [59, 63, 62, 57, 59, ... ], 1 nil
6 :thatcher_sat uint8     33 [39, 37, 37, 43, 42, ... ]
7 :thatcher_dis uint8     34 [50, 55, 56, 50, 52, ... ]
8 :opp_sat      uint8     32 [35, 38, 44, 41, 37, ... ], 4 nils
9 :opp_dis      uint8     41 [41, 42, 34, 37, 43, ... ], 4 nils
Rdatasets: stevedata: therms, Thermometer Ratings for Donald Trump and Barack Obama
RedAmber::DataFrame : 3080 x 2 Vectors
Vectors : 2 numeric
# key       type  level data_preview
1 :fttrump1 uint8    73 [80, 85, nil, 80, 0, ... ], 7 nils
2 :ftobama1 uint8    81 [75, 15, nil, 50, 100, ... ], 8 nils
Rdatasets: stevedata: turnips, Turnip prices in Animal Crossing (New Horizons)
RedAmber::DataFrame : 662 x 3 Vectors
Vectors : 1 numeric, 1 string, 1 temporal
# key    type   level data_preview
1 :date  date64   357 [#<DateTime: 2021-04-11T09:00:00+09:00 ((2459316j,0s,0n),+32400s,2299161j)>, #<DateTime: 2021-04-12T09:00:00+09:00 ((2459317j,0s,0n),+32400s,2299161j)>, ... ]
2 :time  string     3 {"5:00 a.m."=>51, "8:00 a.m."=>306, "12:00 p.m."=>305}
3 :price uint16   169 [96, 92, 87, 82, 79, ... ], 5 nils
Rdatasets: stevedata: TV16, The Individual Correlates of the Trump Vote in 2016
RedAmber::DataFrame : 64600 x 21 Vectors
Vectors : 19 numeric, 2 strings
#  key          type   level data_preview
1  :uid         uint16 64600 [1, 2, 3, 4, 5, ... ]
2  :state       string    51 ["New Hampshire", "Louisiana", "Missouri", "Alabama", "Colorado", ... ]
3  :votetrump   uint8      3 {1=>18755, nil=>19668, 0=>26177}
4  :age         uint8     80 [47, 22, 52, 28, 34, ... ]
5  :female      uint8      2 {1=>35069, 0=>29531}
6  :collegeed   uint8      2 {0=>41206, 1=>23394}
7  :racef       string     8 ["White", "White", "Black", "Black", "White", ... ]
8  :famincr     uint8     13 [nil, 6, 4, 1, 7, ... ], 6521 nils
9  :ideo        uint8      6 [3, 3, 5, 4, 2, ... ], 4785 nils
10 :pid7na      uint8      8 [5, 4, 1, 4, 2, ... ], 2121 nils
11 :bornagain   uint8      3 {0=>46371, nil=>43, 1=>18186}
12 :religimp    uint8      5 {3=>17275, nil=>34, 4=>23864, 1=>13429, 2=>9998}
13 :churchatd   uint8      7 [1, nil, 4, 3, 1, ... ], 740 nils
14 :prayerfreq  uint8      8 [3, nil, 5, 5, 2, ... ], 1513 nils
15 :angryracism uint8      6 [2, 1, nil, nil, 2, ... ], 11766 nils
16 :whiteadv    uint8      6 [3, 4, nil, nil, 1, ... ], 11763 nils
17 :fearraces   uint8      6 [1, 1, nil, nil, 1, ... ], 11825 nils
18 :racerare    uint8      6 [3, 1, nil, nil, 1, ... ], 11822 nils
19 :lrelig      double   241 [-0.191680628922646, nil, 0.573060093870443, 0.0693560313642333, -1.13017488472139, ... ], 4 nils
20 :lcograc     double    36 [0.475293749529462, -0.185681754630724, nil, nil, -1.20408468609332, ... ], 11702 nils
 ... 1 more Vector ...
Rdatasets: stevedata: usa_chn_gdp_forecasts, United States-China GDP and GDP Forecasts, 1960-2050
RedAmber::DataFrame : 182 x 12 Vectors
Vectors : 11 numeric, 1 string
#  key          type   level data_preview
1  :country     string     2 {"United States"=>91, "China"=>91}
2  :year        uint16    91 [1960, 1961, 1962, 1963, 1964, ... ]
3  :p_gdp       double   182 [3151799280242.55, 3305832621422.74, 3470474973513.13, 3645694931211.11, 3827591772815.76, ... ]
4  :p_lo80      double   182 [2865567607300.35, 3029880523098.27, 3188577791689.53, 3358056220332.44, 3532547090469.35, ... ]
5  :p_hi80      double   182 [3413431355674.18, 3600511845471.7, 3750138102953.06, 3921134540920.59, 4101902003761.61, ... ]
6  :gdp         double   121 [3173051074322.84, 3246031249032.26, 3444039155223.23, 3595576878053.05, 3804120336980.13, ... ], 62 nils
7  :f_gdp       double    63 [nil, nil, nil, nil, nil, ... ], 120 nils
8  :f_lo80      double    63 [nil, nil, nil, nil, nil, ... ], 120 nils
9  :f_hi80      double    63 [nil, nil, nil, nil, nil, ... ], 120 nils
10 :f_lo95      double    63 [nil, nil, nil, nil, nil, ... ], 120 nils
11 :f_hi95      double    63 [nil, nil, nil, nil, nil, ... ], 120 nils
12 :oecd_ltgdpf double   123 [nil, nil, nil, nil, nil, ... ], 60 nils
Rdatasets: stevedata: usa_migration, U.S. Inbound/Outbound Migration Data, 1990-2017
RedAmber::DataFrame : 3535 x 5 Vectors
Vectors : 2 numeric, 3 strings
# key       type   level data_preview
1 :year     uint16     7 [1990, 1995, 2000, 2005, 2010, ... ]
2 :country  string     1 {"United States of America"=>3535}
3 :category string     2 {"Inbound"=>1645, "Outbound"=>1890}
4 :area     string   273 ["Total", "Total", "Total", "Total", "Total", ... ]
5 :count    uint32  2294 [23251026, 28451053, 34814053, 39258293, 44183643, ... ], 1080 nils
Rdatasets: stevedata: wvs_ccodes, Syncing Word Values Survey Country Codes with CoW Codes
RedAmber::DataFrame : 112 x 3 Vectors
Vectors : 2 numeric, 1 string
# key      type   level data_preview
1 :s003    uint16   112 [8, 12, 20, 31, 32, ... ]
2 :country string   111 ["Albania", "Algeria", "Andorra", "Azerbaijan", "Argentina", ... ]
3 :ccode   uint16   106 [339, 615, 232, 373, 160, ... ], 5 nils
Rdatasets: stevedata: wvs_immig, Attitudes about Immigration in the World Values Survey
RedAmber::DataFrame : 310388 x 6 Vectors
Vectors : 5 numeric, 1 string
# key      type    level data_preview
1 :s002    uint8       4 {3=>77818, 4=>59030, 5=>83975, 6=>89565}
2 :s003    uint16    100 [8, 8, 8, 8, 8, ... ]
3 :country string     98 ["Albania", "Albania", "Albania", "Albania", "Albania", ... ], 2396 nils
4 :s020    uint16     22 [1998, 1998, 1998, 1998, 1998, ... ]
5 :uid     uint32 310388 [38145, 38146, 38147, 38148, 38149, ... ]
6 :e143    uint8       5 {1=>22261, 2=>74797, nil=>125109, 3=>67764, 4=>20457}
Rdatasets: stevedata: wvs_justifbribe, Attitudes about the Justifiability of Bribe-Taking in the World Values Survey
RedAmber::DataFrame : 348532 x 6 Vectors
Vectors : 5 numeric, 1 string
# key      type    level data_preview
1 :s002    uint8       6 [1, 1, 1, 1, 1, ... ]
2 :s003    uint16    100 [32, 32, 32, 32, 32, ... ]
3 :country string     98 ["Argentina", "Argentina", "Argentina", "Argentina", "Argentina", ... ], 2396 nils
4 :s020    uint16     28 [1984, 1984, 1984, 1984, 1984, ... ]
5 :uid     uint32 348532 [1, 2, 3, 4, 5, ... ]
6 :f117    uint8      11 [1, 1, 1, 4, 5, ... ], 15532 nils
Rdatasets: stevedata: wvs_usa_abortion, Attitudes on the Justifiability of Abortion in the United States (World Values Survey, 1982-2011)
RedAmber::DataFrame : 10387 x 16 Vectors
Vectors : 16 numeric
#  key               type   level data_preview
1  :wvsccode         uint16     1 {840=>10387}
2  :wave             uint8      6 [1, 1, 1, 1, 1, ... ]
3  :year             uint16     6 [1982, 1982, 1982, 1982, 1982, ... ]
4  :aj               uint8     11 [5, 5, nil, 1, 5, ... ], 299 nils
5  :age              uint8     80 [40, 43, 18, 18, 22, ... ], 31 nils
6  :collegeed        uint8      3 {nil=>4173, 0=>4598, 1=>1616}
7  :female           uint8      3 {0=>4938, 1=>5409, nil=>40}
8  :unemployed       uint8      3 {0=>9591, nil=>165, 1=>631}
9  :ideology         uint8     11 [8, nil, 10, nil, nil, ... ], 811 nils
10 :satisfinancial   uint8     11 [5, 3, 2, 6, 5, ... ], 70 nils
11 :postma4          int8       4 {nil=>2537, 0=>4797, 1=>1681, -1=>1372}
12 :cai              int8       5 {0=>3345, -2=>1024, -1=>2427, 1=>2564, 2=>1027}
13 :trustmostpeople  uint8      3 {1=>4134, 0=>6058, nil=>195}
14 :godimportant     uint8     11 [10, 10, 8, 10, 5, ... ], 132 nils
15 :respectauthority int8       4 {1=>7366, 0=>2122, nil=>122, -1=>777}
16 :nationalpride    uint8      3 {1=>7209, nil=>247, 0=>2931}
Rdatasets: stevedata: wvs_usa_educat, Education Categories for the United States in the World Values Survey
RedAmber::DataFrame : 42 x 6 Vectors
Vectors : 3 numeric, 3 strings
# key               type   level data_preview
1 :x025             uint8      9 [1, 1, 1, 2, 2, ... ], 11 nils
2 :x025cswvs        uint32    32 [840102, 840115, 840116, 840001, 840103, ... ]
3 :n                uint16    41 [14, 5, 78, 47, 27, ... ]
4 :x025meaning      string     9 ["Inadequately completed elementary education", "Inadequately completed elementary education", "Inadequately completed elementary education", "Completed (compulsory) elementary education", "Completed (compulsory) elementary education", ... ], 11 nils
5 :x025cswvsmeaning string    31 ["US: 1st, 2nd, 3rd, or 4th grade", "US: No formal education", "US: Incomplete primary school", "US: Less than high school/Early childhood education and kind", "US: 5th or 6th grade", ... ]
6 :educat           string     7 ["No Formal Education, Incomplete Primary Education", "No Formal Education, Incomplete Primary Education", "No Formal Education, Incomplete Primary Education", "Complete Primary Education", "Complete Primary Education", ... ]
Rdatasets: stevedata: yugo_sales, Yugo Sales in the United States, 1985-1992
RedAmber::DataFrame : 24 x 3 Vectors
Vectors : 2 numeric, 1 string
# key    type   level data_preview
1 :year  uint16     8 [1985, 1986, 1987, 1988, 1989, ... ]
2 :car   string     3 {"Hyundai Excel"=>8, "Yugo"=>8, "Toyota Tercel"=>8}
3 :sales uint32    23 [nil, 168882, 263610, 264282, 148563, ... ], 1 nil
Rdatasets: survival: cancer, NCCTG Lung Cancer Data
RedAmber::DataFrame : 228 x 10 Vectors
Vectors : 10 numeric
#  key          type   level data_preview
1  :inst        uint8     19 [3, 3, 3, 5, 1, ... ], 1 nil
2  :time        uint16   186 [306, 455, 1010, 210, 883, ... ]
3  :status      uint8      2 {2=>165, 1=>63}
4  :age         uint8     42 [74, 68, 56, 57, 60, ... ]
5  :sex         uint8      2 {1=>138, 2=>90}
6  :"ph.ecog"   uint8      5 {1=>113, 0=>63, 2=>50, nil=>1, 3=>1}
7  :"ph.karno"  uint8      7 [90, 90, 90, 90, 100, ... ], 1 nil
8  :"pat.karno" uint8      9 [100, 90, 90, 60, 90, ... ], 3 nils
9  :"meal.cal"  uint16    61 [1175, 1225, nil, 1150, nil, ... ], 47 nils
10 :"wt.loss"   int8      54 [nil, 15, 15, 11, 0, ... ], 14 nils
Rdatasets: survival: pbc, Mayo Clinic Primary Biliary Cholangitis Data
RedAmber::DataFrame : 418 x 20 Vectors
Vectors : 19 numeric, 1 string
#  key         type   level data_preview
1  :id         uint16   418 [1, 2, 3, 4, 5, ... ]
2  :time       uint16   399 [400, 4500, 1012, 1925, 1504, ... ]
3  :status     uint8      3 {2=>161, 0=>232, 1=>25}
4  :trt        uint8      3 {1=>158, 2=>154, nil=>106}
5  :age        double   344 [58.7652292950034, 56.4462696783025, 70.072553045859, 54.7405886379192, 38.1054072553046, ... ]
6  :sex        string     2 {"f"=>374, "m"=>44}
7  :ascites    uint8      3 {1=>24, 0=>288, nil=>106}
8  :hepato     uint8      3 {1=>160, 0=>152, nil=>106}
9  :spiders    uint8      3 {1=>90, 0=>222, nil=>106}
10 :edema      double     3 {1.0=>20, 0.0=>354, 0.5=>44}
11 :bili       double    98 [14.5, 1.1, 1.4, 1.8, 3.4, ... ]
12 :chol       uint16   202 [261, 302, 176, 244, 279, ... ], 134 nils
13 :albumin    double   154 [2.6, 4.14, 3.48, 2.54, 3.53, ... ]
14 :copper     uint16   159 [156, 54, 210, 64, 143, ... ], 108 nils
15 :"alk.phos" double   296 [1718.0, 7394.8, 516.0, 6121.8, 671.0, ... ], 106 nils
16 :ast        double   180 [137.95, 113.52, 96.1, 60.63, 113.15, ... ], 106 nils
17 :trig       uint16   147 [172, 88, 55, 92, 72, ... ], 136 nils
18 :platelet   uint16   244 [190, 221, 151, 183, 136, ... ], 11 nils
19 :protime    double    49 [12.2, 10.6, 12.0, 10.3, 10.9, ... ], 2 nils
20 :stage      uint8      5 {4=>144, 3=>155, 2=>92, 1=>21, nil=>6}
Rdatasets: survival: rhDNase, rhDNASE data set
RedAmber::DataFrame : 767 x 8 Vectors
Vectors : 6 numeric, 2 temporal
# key         type   level data_preview
1 :id         uint16   647 [1, 2, 3, 4, 5, ... ]
2 :inst       uint8     51 [1, 1, 1, 1, 1, ... ]
3 :trt        uint8      2 {1=>374, 0=>393}
4 :"entry.dt" date64    67 [#<DateTime: 1992-03-20T09:00:00+09:00 ((2448702j,0s,0n),+32400s,2299161j)>, #<DateTime: 1992-03-24T09:00:00+09:00 ((2448706j,0s,0n),+32400s,2299161j)>, ... ]
5 :"end.dt"   date64    92 [#<DateTime: 1992-09-04T09:00:00+09:00 ((2448870j,0s,0n),+32400s,2299161j)>, #<DateTime: 1992-09-09T09:00:00+09:00 ((2448875j,0s,0n),+32400s,2299161j)>, ... ]
6 :fev        double    37 [28.8, 64.0, 67.2, 57.6, 57.6, ... ]
7 :ivstart    int16    158 [nil, nil, 65, nil, nil, ... ], 400 nils
8 :ivstop     uint8    150 [nil, nil, 75, nil, nil, ... ], 400 nils
Rdatasets: survival: transplant, Liver transplant waiting list
RedAmber::DataFrame : 815 x 6 Vectors
Vectors : 3 numeric, 3 strings
# key     type   level data_preview
1 :age    uint8     56 [47, 55, 52, 40, 70, ... ], 18 nils
2 :sex    string     2 {"m"=>447, "f"=>368}
3 :abo    string     4 {"B"=>103, "A"=>325, "O"=>346, "AB"=>41}
4 :year   uint16    10 [1994, 1991, 1996, 1995, 1996, ... ]
5 :futime uint16   397 [1197, 28, 85, 231, 1271, ... ]
6 :event  string     4 {"death"=>66, "ltx"=>636, "censored"=>76, "withdraw"=>37}
Rdatasets: survival: udca, Data from a trial of usrodeoxycholic acid
RedAmber::DataFrame : 170 x 15 Vectors
Vectors : 5 numeric, 10 temporal
#  key             type   level data_preview
1  :id             uint8    170 [1, 2, 3, 4, 5, ... ]
2  :trt            uint8      2 {1=>86, 0=>84}
3  :"entry.dt"     date64   141 [#<DateTime: 1988-04-21T09:00:00+09:00 ((2447273j,0s,0n),+32400s,2299161j)>, #<DateTime: 1988-04-27T09:00:00+09:00 ((2447279j,0s,0n),+32400s,2299161j)>, ... ]
4  :"last.dt"      date64    60 [#<DateTime: 1993-06-30T09:00:00+09:00 ((2449169j,0s,0n),+32400s,2299161j)>, #<DateTime: 1993-06-30T09:00:00+09:00 ((2449169j,0s,0n),+32400s,2299161j)>, ... ]
5  :stage          uint8      2 {1=>117, 0=>53}
6  :bili           double    48 [1.0, 1.7, 0.5, 1.4, 1.1, ... ]
7  :riskscore      double    48 [5.1, 4.2, 3.4, 5.0, 4.3, ... ], 1 nil
8  :"death.dt"     date64    17 [nil, nil, ... ]
9  :"tx.dt"        date64    13 [nil, nil, ... ]
10 :"hprogress.dt" date64    21 [nil, nil, ... ]
11 :"varices.dt"   date64    25 [nil, nil, ... ]
12 :"ascites.dt"   date64     7 [nil, nil, ... ]
13 :"enceph.dt"    date64     5 [nil, nil, ... ]
14 :"double.dt"    date64    17 [nil, nil, ... ]
15 :"worsen.dt"    date64    17 [nil, #<DateTime: 1992-04-22T09:00:00+09:00 ((2448735j,0s,0n),+32400s,2299161j)>, ... ]
Rdatasets: tidyr: smiths, Some data about the Smith family
RedAmber::DataFrame : 2 x 5 Vectors
Vectors : 4 numeric, 1 string
# key      type   level data_preview
1 :subject string     2 ["John Smith", "Mary Smith"]
2 :time    uint8      1 {1=>2}
3 :age     uint8      2 [33, nil], 1 nil
4 :weight  uint8      2 [90, nil], 1 nil
5 :height  double     2 [1.87, 1.54]
Rdatasets: tidyr: us_rent_income, US rent and income data
RedAmber::DataFrame : 104 x 5 Vectors
Vectors : 3 numeric, 2 strings
# key       type   level data_preview
1 :GEOID    double    52 [1.0, 1.0, 2.0, 2.0, 4.0, ... ]
2 :NAME     string    52 ["Alabama", "Alabama", "Alaska", "Alaska", "Arizona", ... ]
3 :variable string     2 {"income"=>52, "rent"=>52}
4 :estimate uint16   101 [24476, 747, 32940, 1200, 27517, ... ], 1 nil
5 :moe      uint16    59 [136, 3, 508, 13, 148, ... ], 1 nil
Rdatasets: tidyr: who, World Health Organization TB data
RedAmber::DataFrame : 7240 x 60 Vectors
Vectors : 57 numeric, 3 strings
#  key           type   level data_preview
1  :country      string   219 ["Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", ... ]
2  :iso2         string   219 ["AF", "AF", "AF", "AF", "AF", ... ], 34 nils
3  :iso3         string   219 ["AFG", "AFG", "AFG", "AFG", "AFG", ... ]
4  :year         uint16    34 [1980, 1981, 1982, 1983, 1984, ... ]
5  :new_sp_m014  uint16   416 [nil, nil, nil, nil, nil, ... ], 4067 nils
6  :new_sp_m1524 uint32  1089 [nil, nil, nil, nil, nil, ... ], 4031 nils
7  :new_sp_m2534 uint32  1279 [nil, nil, nil, nil, nil, ... ], 4034 nils
8  :new_sp_m3544 uint32  1205 [nil, nil, nil, nil, nil, ... ], 4021 nils
9  :new_sp_m4554 uint32  1072 [nil, nil, nil, nil, nil, ... ], 4017 nils
10 :new_sp_m5564 uint16   901 [nil, nil, nil, nil, nil, ... ], 4022 nils
11 :new_sp_m65   uint32   846 [nil, nil, nil, nil, nil, ... ], 4031 nils
12 :new_sp_f014  uint16   452 [nil, nil, nil, nil, nil, ... ], 4066 nils
13 :new_sp_f1524 uint16  1023 [nil, nil, nil, nil, nil, ... ], 4046 nils
14 :new_sp_f2534 uint16  1086 [nil, nil, nil, nil, nil, ... ], 4040 nils
15 :new_sp_f3544 uint16   926 [nil, nil, nil, nil, nil, ... ], 4041 nils
16 :new_sp_f4554 uint16   798 [nil, nil, nil, nil, nil, ... ], 4036 nils
17 :new_sp_f5564 uint16   664 [nil, nil, nil, nil, nil, ... ], 4045 nils
18 :new_sp_f65   uint16   663 [nil, nil, nil, nil, nil, ... ], 4043 nils
19 :new_sn_m014  uint16   263 [nil, nil, nil, nil, nil, ... ], 6195 nils
20 :new_sn_m1524 uint16   304 [nil, nil, nil, nil, nil, ... ], 6210 nils
 ... 40 more Vectors ...
Rdatasets: validate: retailers, data on Dutch supermarkets
RedAmber::DataFrame : 60 x 10 Vectors
Vectors : 9 numeric, 1 string
#  key            type   level data_preview
1  :size          string     4 {"sc0"=>9, "sc3"=>26, "sc1"=>7, "sc2"=>18}
2  :"incl.prob"   double     3 {0.02=>16, 0.14=>26, 0.05=>18}
3  :staff         uint8     24 [75, 9, nil, nil, nil, ... ], 6 nils
4  :turnover      uint32    57 [nil, 1607, 6886, 3861, nil, ... ], 4 nils
5  :"other.rev"   int32     22 [nil, nil, -33, 13, 37, ... ], 36 nils
6  :"total.rev"   uint32    59 [1130, 1607, 6919, 3874, 5602, ... ], 2 nils
7  :"staff.costs" uint32    50 [nil, 131, 324, 290, 314, ... ], 10 nils
8  :"total.costs" uint32    56 [18915, 1544, 6493, 3600, 5530, ... ], 5 nils
9  :profit        int32     52 [20045, 63, 426, 274, 72, ... ], 5 nils
10 :vat           uint16    49 [nil, nil, nil, nil, nil, ... ], 12 nils
Rdatasets: validate: SBS2000, data on Dutch supermarkets
RedAmber::DataFrame : 60 x 11 Vectors
Vectors : 9 numeric, 2 strings
#  key            type   level data_preview
1  :id            string    60 ["RET01", "RET02", "RET03", "RET04", "RET05", ... ]
2  :size          string     4 {"sc0"=>9, "sc3"=>26, "sc1"=>7, "sc2"=>18}
3  :"incl.prob"   double     3 {0.02=>16, 0.14=>26, 0.05=>18}
4  :staff         uint8     24 [75, 9, nil, nil, nil, ... ], 6 nils
5  :turnover      uint32    57 [nil, 1607, 6886, 3861, nil, ... ], 4 nils
6  :"other.rev"   int32     22 [nil, nil, -33, 13, 37, ... ], 36 nils
7  :"total.rev"   uint32    59 [1130, 1607, 6919, 3874, 5602, ... ], 2 nils
8  :"staff.costs" uint32    50 [nil, 131, 324, 290, 314, ... ], 10 nils
9  :"total.costs" uint32    56 [18915, 1544, 6493, 3600, 5530, ... ], 5 nils
10 :profit        int32     52 [20045, 63, 426, 274, 72, ... ], 5 nils
11 :vat           uint16    49 [nil, nil, nil, nil, nil, ... ], 12 nils
Rdatasets: vcd: Bundesliga, Ergebnisse der Fussball-Bundesliga
RedAmber::DataFrame : 14018 x 7 Vectors
Vectors : 4 numeric, 2 strings, 1 temporal
# key        type   level data_preview
1 :HomeTeam  string    52 ["Werder Bremen", "Hertha BSC Berlin", "Preussen Muenster", "Eintracht Frankfurt", "Karlsruher SC", ... ]
2 :AwayTeam  string    52 ["Borussia Dortmund", "1. FC Nuernberg", "Hamburger SV", "1. FC Kaiserslautern", "Meidericher SV", ... ]
3 :HomeGoals uint8     13 [3, 1, 1, 1, 1, ... ]
4 :AwayGoals uint8     10 [2, 1, 1, 1, 4, ... ]
5 :Round     uint8     38 [1, 1, 1, 1, 1, ... ]
6 :Year      uint16    46 [1963, 1963, 1963, 1963, 1963, ... ]
7 :Date      date64  3396 [#<DateTime: 1963-08-24T19:30:00+09:00 ((2438266j,37800s,0n),+32400s,2299161j)>, #<DateTime: 1963-08-24T19:30:00+09:00 ((2438266j,37800s,0n),+32400s,2299161j)>, ... ]
Rdatasets: wooldridge: athlet1, athlet1
RedAmber::DataFrame : 118 x 23 Vectors
Vectors : 22 numeric, 1 string
#  key       type   level data_preview
1  :year     uint16     2 {1992=>59, 1993=>59}
2  :apps     uint16   115 [6245, 7677, 13327, 19860, 10422, ... ]
3  :top25    uint8     45 [49, 58, 57, 57, 37, ... ], 25 nils
4  :ver500   uint8     48 [nil, nil, 36, 36, 28, ... ], 30 nils
5  :mth500   uint8     41 [nil, nil, 58, 58, 58, ... ], 30 nils
6  :stufac   uint8     18 [20, 15, 16, 16, 20, ... ]
7  :bowl     uint8      2 {1=>54, 0=>64}
8  :btitle   uint8      2 {0=>104, 1=>14}
9  :finfour  uint8      2 {0=>111, 1=>7}
10 :lapps    double   115 [8.73953628540039, 8.94598388671875, 9.4975471496582, 9.89646339416504, 9.25167465209961, ... ]
11 :d93      uint8      2 {0=>59, 1=>59}
12 :avg500   double    62 [nil, nil, 47.0, 47.0, 43.0, ... ], 30 nils
13 :cfinfour int8       4 {nil=>59, 0=>54, -1=>2, 1=>3}
14 :clapps   double    58 [nil, 0.206447601318359, nil, 0.398916244506836, nil, ... ], 59 nils
15 :cstufac  int8      12 [nil, -5, nil, 0, nil, ... ], 59 nils
16 :cbowl    int8       4 {nil=>59, 0=>41, 1=>9, -1=>9}
17 :cavg500  double    21 [nil, nil, nil, 0.0, nil, ... ], 77 nils
18 :cbtitle  int8       4 {nil=>1, 0=>93, 1=>12, -1=>12}
19 :lapps_1  double    60 [nil, 8.73953628540039, nil, 9.4975471496582, nil, ... ], 59 nils
20 :school   string    59 ["alabama", "alabama", "arizona", "arizona", "arizona state", ... ]
 ... 3 more Vectors ...
Rdatasets: wooldridge: athlet2, athlet2
RedAmber::DataFrame : 30 x 10 Vectors
Vectors : 10 numeric
#  key      type  level data_preview
1  :dscore  int8     23 [10, -14, 23, 8, -12, ... ]
2  :dinstt  int16    30 [-409, nil, -654, -222, -10, ... ], 1 nil
3  :doutstt int16    26 [-4679, -66, -637, 456, 208, ... ]
4  :htpriv  uint8     2 {0=>26, 1=>4}
5  :vtpriv  uint8     2 {0=>27, 1=>3}
6  :dapps   int16    30 [-1038, -7051, 6209, -129, 794, ... ]
7  :htwrd   uint8     2 {1=>21, 0=>9}
8  :vtwrd   uint8     2 {1=>17, 0=>13}
9  :dwinrec int8      3 {0=>14, 1=>10, -1=>6}
10 :dpriv   int8      3 {0=>23, 1=>4, -1=>3}
Rdatasets: wooldridge: beveridge, beveridge
RedAmber::DataFrame : 135 x 8 Vectors
Vectors : 7 numeric, 1 temporal
# key      type   level data_preview
1 :month   date64   135 [#<DateTime: 2000-12-01T09:00:00+09:00 ((2451880j,0s,0n),+32400s,2299161j)>, #<DateTime: 2001-01-01T09:00:00+09:00 ((2451911j,0s,0n),+32400s,2299161j)>, ... ]
2 :urate   double    46 [3.8, 4.1, 4.1, 4.1, 4.2, ... ]
3 :vrate   double    23 [4.0, 4.1, 3.7, 3.7, 3.6, ... ]
4 :t       uint8    135 [1, 2, 3, 4, 5, ... ]
5 :urate_1 double    47 [nil, 3.79999995231628, 4.09999990463257, 4.09999990463257, 4.09999990463257, ... ], 1 nil
6 :vrate_1 double    24 [nil, 4.0, 4.09999990463257, 3.70000004768372, 3.70000004768372, ... ], 1 nil
7 :curate  double    13 [nil, 0.300000011920929, 0.0, 0.0, 0.100000001490116, ... ], 1 nil
8 :cvrate  double    11 [nil, 0.100000001490116, -0.400000005960464, 0.0, -0.100000001490116, ... ], 1 nil
Rdatasets: wooldridge: big9salary, big9salary
RedAmber::DataFrame : 786 x 30 Vectors
Vectors : 30 numeric
#  key        type   level data_preview
1  :id        uint16   262 [101, 101, 101, 102, 102, ... ]
2  :year      uint8      3 {92=>262, 95=>262, 99=>262}
3  :salary    uint32   616 [nil, nil, 107100, 79420, 88239, ... ], 107 nils
4  :pubindx   double   558 [30.5400009155273, 30.9599990844727, 40.4500007629395, 33.5400009155273, 33.8899993896484, ... ]
5  :totpge    double   518 [92.6669998168945, 107.169998168945, 186.5, 127.5, 133.0, ... ], 39 nils
6  :assist    uint8      3 {0=>558, 1=>66, nil=>162}
7  :assoc     uint8      3 {0=>517, nil=>162, 1=>107}
8  :prof      uint8      3 {1=>430, 0=>193, nil=>163}
9  :chair     uint8      3 {0=>645, 1=>35, nil=>106}
10 :top20phd  uint8      3 {0=>165, 1=>540, nil=>81}
11 :yearphd   uint8     45 [73, 73, 73, 76, 76, ... ], 87 nils
12 :female    uint8      3 {0=>690, 1=>63, nil=>33}
13 :osu       uint8      2 {0=>693, 1=>93}
14 :iowa      uint8      2 {0=>711, 1=>75}
15 :indiana   uint8      2 {1=>63, 0=>723}
16 :purdue    uint8      2 {0=>726, 1=>60}
17 :msu       uint8      2 {0=>678, 1=>108}
18 :minn      uint8      2 {0=>705, 1=>81}
19 :mich      uint8      2 {0=>678, 1=>108}
20 :wisc      uint8      2 {0=>687, 1=>99}
 ... 10 more Vectors ...
Rdatasets: wooldridge: bwght, bwght
RedAmber::DataFrame : 1388 x 14 Vectors
Vectors : 14 numeric
#  key       type   level data_preview
1  :faminc   double    27 [13.5, 7.5, 0.5, 15.5, 27.5, ... ]
2  :cigtax   double    28 [16.5, 16.5, 16.5, 16.5, 16.5, ... ]
3  :cigprice double    46 [122.300003051758, 122.300003051758, 122.300003051758, 122.300003051758, 122.300003051758, ... ]
4  :bwght    uint16   116 [109, 133, 129, 126, 134, ... ]
5  :fatheduc uint8     19 [12, 6, nil, 12, 14, ... ], 196 nils
6  :motheduc uint8     18 [12, 12, 12, 12, 12, ... ], 1 nil
7  :parity   uint8      6 [1, 2, 2, 2, 2, ... ]
8  :male     uint8      2 {1=>723, 0=>665}
9  :white    uint8      2 {1=>1089, 0=>299}
10 :cigs     uint8     18 [0, 0, 0, 0, 0, ... ]
11 :lbwght   double   116 [4.6913480758667, 4.8903489112854, 4.85981225967407, 4.83628177642822, 4.89784002304077, ... ]
12 :bwghtlbs double   116 [6.8125, 8.3125, 8.0625, 7.875, 8.375, ... ]
13 :packs    double    18 [0.0, 0.0, 0.0, 0.0, 0.0, ... ]
14 :lfaminc  double    27 [2.60268974304199, 2.01490306854248, -0.6931471824646, 2.74083995819092, 3.31418609619141, ... ]
Rdatasets: wooldridge: bwght2, bwght2
RedAmber::DataFrame : 1832 x 23 Vectors
Vectors : 23 numeric
#  key      type   level data_preview
1  :mage    uint8     29 [26, 29, 33, 28, 23, ... ]
2  :meduc   uint8     15 [12, 12, 12, 17, 13, ... ], 30 nils
3  :monpre  uint8     11 [2, 2, 1, 5, 2, ... ], 5 nils
4  :npvis   uint8     33 [12, 12, 12, 8, 6, ... ], 68 nils
5  :fage    uint8     43 [34, 32, 36, 32, 24, ... ], 6 nils
6  :feduc   uint8     14 [16, 12, 16, 17, 16, ... ], 47 nils
7  :bwght   uint16   557 [3060, 3730, 2530, 3289, 3590, ... ]
8  :omaps   uint8     12 [9, 8, 8, 8, 6, ... ], 3 nils
9  :fmaps   uint8      8 [9, 9, 9, 9, 8, ... ], 3 nils
10 :cigs    uint8     19 [0, nil, 0, 0, 0, ... ], 110 nils
11 :drink   uint8      7 [0, nil, 0, 0, 0, ... ], 115 nils
12 :lbw     uint8      2 {0=>1802, 1=>30}
13 :vlbw    uint8      2 {0=>1819, 1=>13}
14 :male    uint8      2 {1=>941, 0=>891}
15 :mwhte   uint8      2 {0=>208, 1=>1624}
16 :mblck   uint8      2 {0=>1723, 1=>109}
17 :moth    uint8      2 {1=>99, 0=>1733}
18 :fwhte   uint8      2 {0=>202, 1=>1630}
19 :fblck   uint8      2 {0=>1725, 1=>107}
20 :foth    uint8      2 {1=>95, 0=>1737}
 ... 3 more Vectors ...
Rdatasets: wooldridge: card, card
RedAmber::DataFrame : 3010 x 34 Vectors
Vectors : 34 numeric
#  key       type   level data_preview
1  :id       uint16  3010 [2, 3, 4, 5, 6, ... ]
2  :nearc2   uint8      2 {0=>1683, 1=>1327}
3  :nearc4   uint8      2 {0=>957, 1=>2053}
4  :educ     uint8     18 [7, 12, 12, 11, 12, ... ]
5  :age      uint8     11 [29, 27, 34, 27, 34, ... ]
6  :fatheduc uint8     20 [nil, 8, 14, 11, 8, ... ], 690 nils
7  :motheduc uint8     20 [nil, 8, 12, 12, 7, ... ], 353 nils
8  :weight   uint32   348 [158413, 380166, 367470, 380166, 367470, ... ]
9  :momdad14 uint8      2 {1=>2376, 0=>634}
10 :sinmom14 uint8      2 {0=>2707, 1=>303}
11 :step14   uint8      2 {0=>2893, 1=>117}
12 :reg661   uint8      2 {1=>140, 0=>2870}
13 :reg662   uint8      2 {0=>2526, 1=>484}
14 :reg663   uint8      2 {0=>2421, 1=>589}
15 :reg664   uint8      2 {0=>2817, 1=>193}
16 :reg665   uint8      2 {0=>2383, 1=>627}
17 :reg666   uint8      2 {0=>2721, 1=>289}
18 :reg667   uint8      2 {0=>2679, 1=>331}
19 :reg668   uint8      2 {0=>2925, 1=>85}
20 :reg669   uint8      2 {0=>2738, 1=>272}
 ... 14 more Vectors ...
Rdatasets: wooldridge: catholic, catholic
RedAmber::DataFrame : 7430 x 13 Vectors
Vectors : 13 numeric
#  key       type   level data_preview
1  :id       uint32  7430 [124902, 124915, 124916, 124932, 124944, ... ]
2  :read12   double  2981 [61.41, 58.34, 59.33, 49.59, 57.62, ... ]
3  :math12   double  3114 [49.77, 59.84, 50.38, 45.03, 54.26, ... ]
4  :female   uint8      2 {0=>3586, 1=>3844}
5  :asian    uint8      2 {0=>7046, 1=>384}
6  :hispan   uint8      2 {0=>6661, 1=>769}
7  :black    uint8      2 {0=>6905, 1=>525}
8  :motheduc double     8 [14.0, 14.0, 14.0, 12.0, 12.0, ... ]
9  :fatheduc double     8 [12.0, 14.0, 11.0, 14.0, 12.0, ... ]
10 :lfaminc  double    15 [10.30895, 10.30895, 10.30895, 10.30895, 10.65726, ... ]
11 :hsgrad   uint8      3 {1=>5554, nil=>1460, 0=>416}
12 :cathhs   uint8      2 {0=>6978, 1=>452}
13 :parcath  uint8      2 {1=>2570, 0=>4860}
Rdatasets: wooldridge: cement, cement
RedAmber::DataFrame : 312 x 30 Vectors
Vectors : 30 numeric
#  key      type   level data_preview
1  :year    uint16    26 [1964, 1964, 1964, 1964, 1964, ... ]
2  :month   uint8     12 [1, 2, 3, 4, 5, ... ]
3  :prccem  uint16   136 [nil, nil, nil, nil, nil, ... ], 11 nils
4  :ipcem   double   307 [0.474249988794327, 0.531229972839355, 0.642549991607666, 0.825850009918213, 1.0271999835968, ... ], 2 nils
5  :prcpet  double   163 [13.3999996185303, 13.3999996185303, 13.3999996185303, 13.3999996185303, 13.3999996185303, ... ]
6  :rresc   uint32   310 [115401, 115118, 123663, 116178, 111034, ... ]
7  :rnonc   uint32   312 [142180, 144190, 145577, 150793, 149259, ... ]
8  :ip      double   249 [44.5999984741211, 45.9000015258789, 46.2000007629395, 46.9000015258789, 47.0999984741211, ... ]
9  :rdefs   double   184 [nil, 1.66340005397797, 1.66260004043579, 1.66260004043579, 1.66100001335144, ... ], 5 nils
10 :milemp  uint16   221 [2687, 2696, 2693, 2694, 2690, ... ], 5 nils
11 :gprc    double   165 [nil, nil, nil, nil, nil, ... ], 12 nils
12 :gcem    double   310 [nil, 0.113460436463356, 0.190249606966972, 0.250968545675278, 0.218178749084473, ... ], 3 nils
13 :gprcpet double   181 [nil, 0.0, 0.0, 0.0, 0.0, ... ], 1 nil
14 :gres    double   312 [nil, -0.00245533022098243, 0.0716024339199066, -0.0624366253614426, -0.0452870354056358, ... ], 1 nil
15 :gnon    double   312 [nil, 0.0140380142256618, 0.00957328174263239, 0.0352028794586658, -0.0102249830961227, ... ], 1 nil
16 :gip     double   308 [nil, 0.0287313256412745, 0.00651466427370906, 0.0150378933176398, 0.00425526080653071, ... ], 1 nil
17 :gdefs   double   205 [nil, nil, -0.000481066468637437, 0.0, -0.000962827762123197, ... ], 6 nils
18 :gmilemp double   290 [nil, 0.00334386341273785, -0.00111337925773114, 0.000371264148270711, -0.00148588442243636, ... ], 6 nils
19 :jan     uint8      2 {1=>26, 0=>286}
20 :feb     uint8      2 {0=>286, 1=>26}
 ... 10 more Vectors ...
Rdatasets: wooldridge: consump, consump
RedAmber::DataFrame : 37 x 24 Vectors
Vectors : 24 numeric
#  key      type   level data_preview
1  :year    uint16    37 [1959, 1960, 1961, 1962, 1963, ... ]
2  :i3      double    37 [3.41000008583069, 2.9300000667572, 2.38000011444092, 2.77999997138977, 3.16000008583069, ... ]
3  :inf     double    30 [0.699999988079071, 1.70000004768372, 1.0, 1.0, 1.29999995231628, ... ]
4  :rdisp   double    37 [1530.09997558594, 1565.40002441406, 1615.80004882812, 1693.69995117188, 1755.5, ... ]
5  :rnondc  double    37 [606.299987792969, 615.400024414062, 626.700012207031, 646.5, 660.0, ... ]
6  :rserv   double    37 [687.400024414062, 717.400024414062, 746.5, 783.400024414062, 818.700012207031, ... ]
7  :pop     uint32    37 [177830, 180671, 183691, 186538, 189242, ... ]
8  :y       double    37 [8604.28515625, 8664.3681640625, 8796.2939453125, 9079.6513671875, 9276.482421875, ... ]
9  :rcons   double    37 [1293.69995117188, 1332.80004882812, 1373.19995117188, 1429.90002441406, 1478.69995117188, ... ]
10 :c       double    37 [7274.92529296875, 7376.9453125, 7475.59716796875, 7665.46240234375, 7813.80419921875, ... ]
11 :r3      double    36 [2.71000003814697, 1.23000001907349, 1.38000011444092, 1.77999997138977, 1.8600001335144, ... ]
12 :lc      double    37 [8.89218902587891, 8.90611457824707, 8.91939926147461, 8.94447994232178, 8.96364688873291, ... ]
13 :ly      double    37 [9.06001567840576, 9.06697463989258, 9.08208560943604, 9.11379146575928, 9.13523769378662, ... ]
14 :gc      double    37 [nil, 0.0139255523681641, 0.0132846832275391, 0.025080680847168, 0.0191669464111328, ... ], 1 nil
15 :gy      double    37 [nil, 0.00695896148681641, 0.015110969543457, 0.0317058563232422, 0.0214462280273438, ... ], 1 nil
16 :gc_1    double    36 [nil, nil, 0.0139255523681641, 0.0132846832275391, 0.025080680847168, ... ], 2 nils
17 :gy_1    double    36 [nil, nil, 0.00695896148681641, 0.015110969543457, 0.0317058563232422, ... ], 2 nils
18 :r3_1    double    36 [nil, 2.71000003814697, 1.23000001907349, 1.38000011444092, 1.77999997138977, ... ], 1 nil
19 :lc_ly   double    37 [-0.167826652526855, -0.160860061645508, -0.162686347961426, -0.1693115234375, -0.171590805053711, ... ]
20 :lc_ly_1 double    37 [nil, -0.167826652526855, -0.160860061645508, -0.162686347961426, -0.1693115234375, ... ], 1 nil
 ... 4 more Vectors ...
Rdatasets: wooldridge: countymurders, countymurders
RedAmber::DataFrame : 37349 x 20 Vectors
Vectors : 20 numeric
#  key          type   level data_preview
1  :arrests     uint16   311 [2, 3, 2, 7, 3, ... ], 504 nils
2  :countyid    uint16  2197 [1001, 1001, 1001, 1001, 1001, ... ]
3  :density     double 23374 [54.05, 53.66, 53.75, 53.78, 53.91, ... ]
4  :popul       uint32 24313 [32216, 31984, 32036, 32056, 32128, ... ]
5  :perc1019    double  9997 [20.63, 20.19, 19.66, 19.1, 18.54, ... ]
6  :perc2029    double 10957 [15.28, 15.55, 15.73, 15.88, 15.92, ... ]
7  :percblack   double 12958 [22.33, 22.07, 21.8, 21.53, 21.26, ... ]
8  :percmale    double  9988 [40.25, 40.36, 40.42, 40.47, 40.51, ... ]
9  :rpcincmaint double  7298 [167.67, 167.99, 166.63, 176.53, 166.25, ... ], 3 nils
10 :rpcpersinc  double 32069 [8780.8, 8232.8, 8327.61, 8545.55, 8965.16, ... ], 3 nils
11 :rpcunemins  double  3968 [29.16, 43.92, 71.41, 72.22, 40.36, ... ], 3 nils
12 :year        uint16    17 [1980, 1981, 1982, 1983, 1984, ... ]
13 :murders     uint16   356 [2, 1, 3, 7, 2, ... ]
14 :murdrate    double 18077 [0.6208096, 0.3126563, 0.9364465, 2.183679, 0.62251, ... ]
15 :arrestrate  double 17259 [0.6208095, 0.937969, 0.6242977, 2.183679, 0.933765, ... ], 504 nils
16 :statefips   uint8     46 [1, 1, 1, 1, 1, ... ]
17 :countyfips  uint16   274 [1, 1, 1, 1, 1, ... ]
18 :execs       uint8      8 [0, 0, 0, 0, 0, ... ]
19 :lpopul      double 24295 [10.38022, 10.37299, 10.37462, 10.37524, 10.37748, ... ]
20 :execrate    double   206 [0.0, 0.0, 0.0, 0.0, 0.0, ... ]
Rdatasets: wooldridge: cps91, cps91
RedAmber::DataFrame : 5634 x 24 Vectors
Vectors : 24 numeric
#  key       type   level data_preview
1  :husage   uint8     65 [42, 26, 56, 35, 42, ... ]
2  :husunion uint8      3 {0=>3184, nil=>1486, 1=>964}
3  :husearns uint16   673 [568, 600, 1500, 0, 450, ... ]
4  :huseduc  uint8     19 [14, 14, 14, 12, 11, ... ]
5  :husblck  uint8      2 {0=>5299, 1=>335}
6  :hushisp  uint8      2 {0=>5261, 1=>373}
7  :hushrs   uint8     84 [40, 0, 40, 40, 45, ... ]
8  :kidge6   uint8      2 {1=>1733, 0=>3901}
9  :earns    double   613 [290.0, 654.0, 100.0, 0.0, 0.0, ... ]
10 :age      uint8     42 [43, 26, 49, 35, 43, ... ]
11 :black    uint8      2 {0=>5311, 1=>323}
12 :educ     uint8     19 [14, 14, 12, 10, 13, ... ]
13 :hispanic uint8      2 {0=>5238, 1=>396}
14 :union    uint8      3 {0=>3024, nil=>2076, 1=>534}
15 :faminc   uint32    15 [45000, 45000, 55000, 55000, 27500, ... ]
16 :husexp   uint8     69 [22, 6, 36, 17, 25, ... ]
17 :exper    uint8     51 [23, 6, 31, 19, 24, ... ]
18 :kidlt6   uint8      2 {0=>4060, 1=>1574}
19 :hours    uint8     49 [0, 0, 15, 0, 0, ... ]
20 :expersq  uint16    51 [529, 36, 961, 361, 576, ... ]
 ... 4 more Vectors ...
Rdatasets: wooldridge: crime2, crime2
RedAmber::DataFrame : 92 x 34 Vectors
Vectors : 34 numeric
#  key       type   level data_preview
1  :pop      uint32    92 [229528, 246815, 814054, 933177, 374974, ... ]
2  :crimes   uint32    92 [17136, 17306, 75654, 83960, 31352, ... ]
3  :unem     double    60 [8.19999980926514, 3.70000004768372, 8.10000038146973, 5.40000009536743, 9.0, ... ]
4  :officers uint16    90 [326, 321, 1621, 1803, 633, ... ]
5  :pcinc    uint16    92 [8532, 12155, 7551, 11363, 8343, ... ]
6  :west     uint8      2 {1=>28, 0=>64}
7  :nrtheast uint8      2 {0=>78, 1=>14}
8  :south    uint8      2 {0=>62, 1=>30}
9  :year     uint8      2 {82=>46, 87=>46}
10 :area     double    46 [44.5999984741211, 44.5999984741211, 375.0, 375.0, 49.7999992370605, ... ]
11 :d87      uint8      2 {0=>46, 1=>46}
12 :popden   double    92 [5146.36767578125, 5533.96875, 2170.810546875, 2488.47192382812, 7529.5986328125, ... ]
13 :crmrte   double    92 [74.6575622558594, 70.1172943115234, 92.9348678588867, 89.9722137451172, 83.6111297607422, ... ]
14 :offarea  double    91 [7.30941724777222, 7.19730949401855, 4.32266664505005, 4.80800008773804, 12.710844039917, ... ]
15 :lawexpc  double    91 [850.859924316406, 2262.43994140625, 875.080017089844, 1069.64001464844, 1121.89990234375, ... ]
16 :polpc    double    92 [1.42030596733093, 1.30056929588318, 1.99126839637756, 1.93210935592651, 1.68811702728271, ... ]
17 :lpop     double    92 [12.3437805175781, 12.4163942337036, 13.6097822189331, 13.7463502883911, 12.8346118927002, ... ]
18 :loffic   double    90 [5.7868971824646, 5.7714409828186, 7.39079856872559, 7.4972071647644, 6.45047044754028, ... ]
19 :lpcinc   double    92 [9.05157947540283, 9.40549564361572, 8.92943572998047, 9.3381175994873, 9.02917861938477, ... ]
20 :llawexpc double    91 [6.74624729156494, 7.72419929504395, 6.77431535720825, 6.97507762908936, 7.02277898788452, ... ]
 ... 14 more Vectors ...
Rdatasets: wooldridge: crime3, crime3
RedAmber::DataFrame : 106 x 12 Vectors
Vectors : 12 numeric
#  key       type   level data_preview
1  :district uint8     53 [1, 1, 2, 2, 3, ... ]
2  :year     uint8      2 {72=>53, 78=>53}
3  :crime    double   103 [49.5400009155273, 71.3199996948242, 14.7700004577637, 17.8500003814697, 17.3500003814697, ... ]
4  :clrprc1  uint8     46 [22, 15, 51, 39, 33, ... ]
5  :clrprc2  uint8     47 [23, 17, 62, 40, 34, ... ]
6  :d78      uint8      2 {0=>53, 1=>53}
7  :avgclr   double    65 [22.5, 16.0, 56.5, 39.5, 33.5, ... ]
8  :lcrime   double   103 [3.90278053283691, 4.26717662811279, 2.69259810447693, 2.88200354576111, 2.85359263420105, ... ]
9  :clcrime  double    54 [nil, 0.364396095275879, nil, 0.18940544128418, nil, ... ], 53 nils
10 :cavgclr  double    39 [nil, -6.5, nil, -17.0, nil, ... ], 53 nils
11 :cclrprc1 int8      31 [nil, -7, nil, -12, nil, ... ], 53 nils
12 :cclrprc2 int8      33 [nil, -6, nil, -22, nil, ... ], 53 nils
Rdatasets: wooldridge: crime4, crime4
RedAmber::DataFrame : 630 x 59 Vectors
Vectors : 59 numeric
#  key       type   level data_preview
1  :county   uint8     90 [1, 1, 1, 1, 1, ... ]
2  :year     uint8      7 [81, 82, 83, 84, 85, ... ]
3  :crmrte   double   629 [0.0398848988115788, 0.0383449010550976, 0.0303048007190228, 0.0347259007394314, 0.0365730002522469, ... ]
4  :prbarr   double   622 [0.289696007966995, 0.338111013174057, 0.330448985099792, 0.36252498626709, 0.325394988059998, ... ]
5  :prbconv  double   619 [0.402061998844147, 0.433005005121231, 0.525703012943268, 0.604705989360809, 0.578723013401031, ... ]
6  :prbpris  double   539 [0.472222000360489, 0.506992995738983, 0.479705005884171, 0.520103991031647, 0.497058987617493, ... ]
7  :avgsen   double   453 [5.6100001335144, 5.59000015258789, 5.80000019073486, 6.8899998664856, 6.55000019073486, ... ]
8  :polpc    double   628 [0.00178677996154875, 0.0017665900522843, 0.00183576997369528, 0.00188588001765311, 0.0019243600545451, ... ]
9  :density  double   553 [2.30715942382812, 2.33025407791138, 2.341801404953, 2.34642028808594, 2.36489605903625, ... ]
10 :taxpc    double   630 [25.6976299285889, 24.8742523193359, 26.4514427185059, 26.8423480987549, 28.1403369903564, ... ]
11 :west     uint8      2 {0=>483, 1=>147}
12 :central  uint8      2 {1=>238, 0=>392}
13 :urban    uint8      2 {0=>574, 1=>56}
14 :pctmin80 double    90 [20.2187004089355, 20.2187004089355, 20.2187004089355, 20.2187004089355, 20.2187004089355, ... ]
15 :wcon     double   575 [206.48030090332, 212.754196166992, 219.780212402344, 223.423797607422, 243.756240844727, ... ]
16 :wtuc     double   570 [333.620880126953, 369.296417236328, 1394.80346679688, 398.860412597656, 358.783020019531, ... ]
17 :wtrd     double   625 [182.3330078125, 189.541412353516, 196.639465332031, 200.562911987305, 206.882736206055, ... ]
18 :wfir     double   535 [272.449188232422, 300.878753662109, 309.969635009766, 350.086334228516, 383.070739746094, ... ]
19 :wser     double   610 [215.733489990234, 231.576705932617, 240.156845092773, 252.447677612305, 261.086120605469, ... ]
20 :wmfg     double   616 [229.119995117188, 240.330001831055, 269.700012207031, 281.739990234375, 298.880004882812, ... ]
 ... 39 more Vectors ...
Rdatasets: wooldridge: discrim, discrim
RedAmber::DataFrame : 410 x 37 Vectors
Vectors : 37 numeric
#  key       type   level data_preview
1  :psoda    double    41 [1.12000000476837, 1.05999994277954, 1.05999994277954, 1.12000000476837, 1.12000000476837, ... ], 8 nils
2  :pfries   double    46 [1.05999994277954, 0.910000026226044, 0.910000026226044, 1.01999998092651, nil, ... ], 17 nils
3  :pentree  double    73 [1.01999998092651, 0.949999988079071, 0.980000019073486, 1.05999994277954, 0.490000009536743, ... ], 12 nils
4  :wagest   double    33 [4.25, 4.75, 4.25, 5.0, 5.0, ... ], 20 nils
5  :nmgrs    double    13 [3.0, 3.0, 3.0, 4.0, 3.0, ... ], 6 nils
6  :nregs    uint8      9 [5, 3, 5, 5, 3, ... ], 22 nils
7  :hrsopen  double    23 [16.0, 16.5, 18.0, 16.0, 16.0, ... ]
8  :emp      double    97 [27.5, 21.5, 30.0, 27.5, 5.0, ... ], 6 nils
9  :psoda2   double    43 [1.11000001430511, 1.04999995231628, 1.04999995231628, 1.14999997615814, 1.03999996185303, ... ], 22 nils
10 :pfries2  double    44 [1.11000001430511, 0.889999985694885, 0.939999997615814, 1.04999995231628, 1.00999999046326, ... ], 28 nils
11 :pentree2 double    77 [1.04999995231628, 0.949999988079071, 0.980000019073486, 1.04999995231628, 0.579999983310699, ... ], 24 nils
12 :wagest2  double    25 [5.05000019073486, 5.05000019073486, 5.05000019073486, 5.05000019073486, 5.05000019073486, ... ], 21 nils
13 :nmgrs2   double    11 [5.0, 4.0, 4.0, 4.0, 3.0, ... ], 6 nils
14 :nregs2   uint8      9 [5, 3, 5, 5, 3, ... ], 22 nils
15 :hrsopen2 double    24 [15.0, 17.5, 17.5, 16.0, 16.0, ... ], 11 nils
16 :emp2     double    85 [27.0, 24.5, 25.0, nil, 12.0, ... ], 13 nils
17 :compown  uint8      2 {1=>141, 0=>269}
18 :chain    uint8      4 {3=>99, 1=>171, 2=>80, 4=>60}
19 :density  double   208 [4030.0, 4030.0, 11400.0, 8345.0, 720.0, ... ], 1 nil
20 :crmrte   double   207 [0.052886601537466, 0.052886601537466, 0.0360003001987934, 0.0484232008457184, 0.0615889988839626, ... ], 1 nil
 ... 17 more Vectors ...
Rdatasets: wooldridge: earns, earns
RedAmber::DataFrame : 41 x 14 Vectors
Vectors : 14 numeric
#  key       type   level data_preview
1  :year     uint16    41 [1947, 1948, 1949, 1950, 1951, ... ]
2  :wkearns  double    41 [123.519996643066, 123.430000305176, 127.839996337891, 133.830001831055, 134.869995117188, ... ]
3  :wkhours  double    29 [40.2999992370605, 40.0, 39.4000015258789, 39.7999992370605, 39.9000015258789, ... ]
4  :outphr   double    41 [51.4000015258789, 53.2999992370605, 54.2000007629395, 57.7000007629395, 59.4000015258789, ... ]
5  :hrwage   double    41 [3.06501245498657, 3.08575010299683, 3.24466991424561, 3.36256289482117, 3.38020014762878, ... ]
6  :lhrwage  double    41 [1.12005162239075, 1.12679481506348, 1.17701363563538, 1.21270346641541, 1.21793496608734, ... ]
7  :loutphr  double    41 [3.93963813781738, 3.97593641281128, 3.99268102645874, 4.05525732040405, 4.08429431915283, ... ]
8  :t        uint8     41 [1, 2, 3, 4, 5, ... ]
9  :ghrwage  double    41 [nil, 0.00674319267272949, 0.0502188205718994, 0.0356898307800293, 0.00523149967193604, ... ], 1 nil
10 :goutphr  double    41 [nil, 0.0362982749938965, 0.0167446136474609, 0.0625762939453125, 0.0290369987487793, ... ], 1 nil
11 :ghrwge_1 double    40 [nil, nil, 0.00674319267272949, 0.0502188205718994, 0.0356898307800293, ... ], 2 nils
12 :goutph_1 double    40 [nil, nil, 0.0362982749938965, 0.0167446136474609, 0.0625762939453125, ... ], 2 nils
13 :goutph_2 double    39 [nil, nil, nil, 0.0362982749938965, 0.0167446136474609, ... ], 3 nils
14 :lwkhours double    29 [3.69635152816772, 3.68887948989868, 3.67376589775085, 3.68386697769165, 3.68637633323669, ... ]
Rdatasets: wooldridge: econmath, econmath
RedAmber::DataFrame : 856 x 17 Vectors
Vectors : 17 numeric
#  key       type   level data_preview
1  :age      uint8      9 [23, 23, 21, 22, 22, ... ]
2  :work     double    44 [15.0, 0.0, 25.0, 30.0, 25.0, ... ]
3  :study    double    52 [10.0, 22.5, 12.0, 40.0, 15.0, ... ]
4  :econhs   uint8      2 {0=>539, 1=>317}
5  :colgpa   double   612 [3.4909, 2.1, 3.0851, 2.6805, 3.7454, ... ]
6  :hsgpa    double   531 [3.355, 3.219, 3.306, 3.977, 3.89, ... ]
7  :acteng   uint8     24 [24, 23, 21, 31, 28, ... ], 42 nils
8  :actmth   uint8     24 [26, 20, 24, 28, 31, ... ], 42 nils
9  :act      uint8     21 [27, 24, 21, 31, 32, ... ], 42 nils
10 :mathscr  uint8     11 [10, 9, 8, 10, 8, ... ]
11 :male     uint8      2 {1=>428, 0=>428}
12 :calculus uint8      2 {1=>579, 0=>277}
13 :attexc   uint8      2 {0=>602, 1=>254}
14 :attgood  uint8      2 {0=>354, 1=>502}
15 :fathcoll uint8      2 {1=>449, 0=>407}
16 :mothcoll uint8      2 {1=>538, 0=>318}
17 :score    double   149 [84.43, 57.38, 66.39, 81.15, 95.9, ... ]
Rdatasets: wooldridge: ezanders, ezanders
RedAmber::DataFrame : 108 x 25 Vectors
Vectors : 24 numeric, 1 string
#  key     type   level data_preview
1  :month  string    12 ["JAN", "FEB", "MAR", "APR", "MAY", ... ]
2  :uclms  uint16   107 [18369, 17661, 16340, 16268, 19340, ... ], 1 nil
3  :ez     uint8      2 {0=>48, 1=>60}
4  :year   uint16     9 [1980, 1980, 1980, 1980, 1980, ... ]
5  :y81    uint8      2 {0=>96, 1=>12}
6  :y82    uint8      2 {0=>96, 1=>12}
7  :y83    uint8      2 {0=>96, 1=>12}
8  :y84    uint8      2 {0=>96, 1=>12}
9  :y85    uint8      2 {0=>96, 1=>12}
10 :y86    uint8      2 {0=>96, 1=>12}
11 :y87    uint8      2 {0=>96, 1=>12}
12 :y88    uint8      2 {0=>96, 1=>12}
13 :luclms double   107 [9.81841945648193, 9.77911376953125, 9.70137119293213, 9.69695568084717, 9.8699312210083, ... ], 1 nil
14 :jan    uint8      2 {1=>9, 0=>99}
15 :feb    uint8      2 {0=>99, 1=>9}
16 :mar    uint8      2 {0=>99, 1=>9}
17 :apr    uint8      2 {0=>99, 1=>9}
18 :may    uint8      2 {0=>99, 1=>9}
19 :jun    uint8      2 {0=>99, 1=>9}
20 :jul    uint8      2 {0=>99, 1=>9}
 ... 5 more Vectors ...
Rdatasets: wooldridge: ezunem, ezunem
RedAmber::DataFrame : 198 x 37 Vectors
Vectors : 37 numeric
#  key     type   level data_preview
1  :year   uint16     9 [1980, 1981, 1982, 1983, 1984, ... ]
2  :uclms  uint32   198 [166746, 83561, 158146, 83572, 45949, ... ]
3  :ez     uint8      2 {0=>152, 1=>46}
4  :d81    uint8      2 {0=>176, 1=>22}
5  :d82    uint8      2 {0=>176, 1=>22}
6  :d83    uint8      2 {0=>176, 1=>22}
7  :d84    uint8      2 {0=>176, 1=>22}
8  :d85    uint8      2 {0=>176, 1=>22}
9  :d86    uint8      2 {0=>176, 1=>22}
10 :d87    uint8      2 {0=>176, 1=>22}
11 :d88    uint8      2 {0=>176, 1=>22}
12 :c1     uint8      2 {1=>9, 0=>189}
13 :c2     uint8      2 {0=>189, 1=>9}
14 :c3     uint8      2 {0=>189, 1=>9}
15 :c4     uint8      2 {0=>189, 1=>9}
16 :c5     uint8      2 {0=>189, 1=>9}
17 :c6     uint8      2 {0=>189, 1=>9}
18 :c7     uint8      2 {0=>189, 1=>9}
19 :c8     uint8      2 {0=>189, 1=>9}
20 :c9     uint8      2 {0=>189, 1=>9}
 ... 17 more Vectors ...
Rdatasets: wooldridge: fertil2, fertil2
RedAmber::DataFrame : 4361 x 27 Vectors
Vectors : 27 numeric
#  key       type   level data_preview
1  :mnthborn uint8     12 [5, 1, 7, 11, 5, ... ]
2  :yearborn uint8     36 [64, 56, 58, 45, 45, ... ]
3  :age      uint8     35 [24, 32, 30, 42, 43, ... ]
4  :electric uint8      3 {1=>611, 0=>3747, nil=>3}
5  :radio    uint8      3 {1=>3059, 0=>1300, nil=>2}
6  :tv       uint8      3 {1=>405, 0=>3954, nil=>2}
7  :bicycle  uint8      3 {1=>1202, 0=>3156, nil=>3}
8  :educ     uint8     21 [12, 13, 5, 4, 11, ... ]
9  :ceb      uint8     14 [0, 3, 1, 3, 2, ... ]
10 :agefbrth uint8     29 [nil, 25, 27, 17, 24, ... ], 1088 nils
11 :children uint8     14 [0, 3, 1, 2, 2, ... ]
12 :knowmeth uint8      3 {1=>4194, 0=>160, nil=>7}
13 :usemeth  uint8      3 {0=>1812, 1=>2478, nil=>71}
14 :monthfm  uint8     13 [nil, 11, 6, 1, 3, ... ], 2282 nils
15 :yearfm   uint8     39 [nil, 80, 83, 61, 66, ... ], 2282 nils
16 :agefm    uint8     36 [nil, 24, 24, 15, 20, ... ], 2282 nils
17 :idlnchld uint8     20 [2, 3, 5, 3, 2, ... ], 120 nils
18 :heduc    uint8     22 [nil, 12, 7, 11, 14, ... ], 2405 nils
19 :agesq    uint16    35 [576, 1024, 900, 1764, 1849, ... ]
20 :urban    uint8      2 {1=>2253, 0=>2108}
 ... 7 more Vectors ...
Rdatasets: wooldridge: fertil3, fertil3
RedAmber::DataFrame : 72 x 24 Vectors
Vectors : 24 numeric
#  key     type   level data_preview
1  :gfr    double    67 [124.699996948242, 126.599998474121, 125.0, 123.400001525879, 121.0, ... ]
2  :pe     double    69 [0.0, 0.0, 0.0, 0.0, 19.2700004577637, ... ]
3  :year   uint16    72 [1913, 1914, 1915, 1916, 1917, ... ]
4  :t      uint8     72 [1, 2, 3, 4, 5, ... ]
5  :tsq    uint16    72 [1, 4, 9, 16, 25, ... ]
6  :pe_1   double    69 [nil, 0.0, 0.0, 0.0, 0.0, ... ], 1 nil
7  :pe_2   double    68 [nil, nil, 0.0, 0.0, 0.0, ... ], 2 nils
8  :pe_3   double    67 [nil, nil, nil, 0.0, 0.0, ... ], 3 nils
9  :pe_4   double    66 [nil, nil, nil, nil, 0.0, ... ], 4 nils
10 :pill   uint8      2 {0=>50, 1=>22}
11 :ww2    uint8      2 {0=>67, 1=>5}
12 :tcu    uint32    72 [1, 8, 27, 64, 125, ... ]
13 :cgfr   double    60 [nil, 1.90000152587891, -1.59999847412109, -1.59999847412109, -2.40000152587891, ... ], 1 nil
14 :cpe    double    70 [nil, 0.0, 0.0, 0.0, 19.2700004577637, ... ], 1 nil
15 :cpe_1  double    69 [nil, nil, 0.0, 0.0, 0.0, ... ], 2 nils
16 :cpe_2  double    68 [nil, nil, nil, 0.0, 0.0, ... ], 3 nils
17 :cpe_3  double    67 [nil, nil, nil, nil, 0.0, ... ], 4 nils
18 :cpe_4  double    66 [nil, nil, nil, nil, nil, ... ], 5 nils
19 :gfr_1  double    67 [nil, 124.699996948242, 126.599998474121, 125.0, 123.400001525879, ... ], 1 nil
20 :cgfr_1 double    59 [nil, nil, 1.90000152587891, -1.59999847412109, -1.59999847412109, ... ], 2 nils
 ... 4 more Vectors ...
Rdatasets: wooldridge: fish, fish
RedAmber::DataFrame : 97 x 20 Vectors
Vectors : 20 numeric
#  key      type   level data_preview
1  :prca    double    88 [0.622222185134888, 0.972222208976746, 1.23333299160004, 1.92857098579407, 0.803125023841858, ... ]
2  :prcw    double    84 [0.76666671037674, 1.17499995231628, 1.47500002384186, 1.625, 0.864285707473755, ... ]
3  :qtya    uint16    92 [1875, 2900, 770, 927, 4220, ... ]
4  :qtyw    uint16    87 [2205, 566, 1525, 943, 2665, ... ]
5  :mon     uint8      2 {1=>18, 0=>79}
6  :tues    uint8      2 {0=>78, 1=>19}
7  :wed     uint8      2 {0=>77, 1=>20}
8  :thurs   uint8      2 {0=>77, 1=>20}
9  :speed2  uint8      6 [15, 10, 10, 15, 10, ... ]
10 :wave2   double    14 [7.5, 5.0, 6.0, 6.0, 3.5, ... ]
11 :speed3  uint8      8 [20, 20, 20, 20, 20, ... ]
12 :wave3   double    13 [9.0, 7.5, 4.0, 5.0, 3.5, ... ]
13 :avgprc  double    96 [0.700285971164703, 1.00533592700958, 1.39391779899597, 1.77548682689667, 0.826798677444458, ... ]
14 :totqty  uint16    92 [4080, 3466, 2295, 1870, 6885, ... ]
15 :lavgprc double    96 [-0.356266498565674, 0.00532174156978726, 0.332118332386017, 0.574074625968933, -0.190194055438042, ... ]
16 :ltotqty double    92 [8.31385231018066, 8.1507568359375, 7.73848819732666, 7.53369379043579, 8.8371000289917, ... ]
17 :t       uint8     97 [1, 2, 3, 4, 5, ... ]
18 :lavgp_1 double    96 [nil, -0.356266498565674, 0.00532174156978726, 0.332118332386017, 0.574074625968933, ... ], 1 nil
19 :gavgprc double    97 [nil, 0.3615882396698, 0.326796591281891, 0.241956293582916, -0.764268696308136, ... ], 1 nil
20 :gavgp_1 double    96 [nil, nil, 0.3615882396698, 0.326796591281891, 0.241956293582916, ... ], 2 nils
Rdatasets: wooldridge: gpa3, gpa3
RedAmber::DataFrame : 732 x 23 Vectors
Vectors : 23 numeric
#  key       type   level data_preview
1  :term     uint8      2 {1=>366, 2=>366}
2  :sat      uint16    76 [920, 920, 780, 780, 810, ... ]
3  :tothrs   uint8    119 [31, 43, 28, 43, 0, ... ]
4  :cumgpa   double   205 [2.25, 2.03999996185303, 2.02999997138977, 2.08999991416931, 0.0, ... ]
5  :season   uint8      2 {0=>241, 1=>491}
6  :frstsem  uint8      2 {0=>635, 1=>97}
7  :crsgpa   double   684 [2.646399974823, 2.50769996643066, 2.86789989471436, 2.88389992713928, 2.76340007781982, ... ]
8  :verbmath double   267 [0.483869999647141, 0.483869999647141, 0.813950002193451, 0.813950002193451, 0.883719980716705, ... ]
9  :trmgpa   double   171 [1.5, 2.25, 2.20000004768372, 1.60000002384186, 1.60000002384186, ... ]
10 :hssize   uint16   264 [10, 10, 123, 123, 119, ... ]
11 :hsrank   uint16   196 [4, 4, 102, 102, 42, ... ]
12 :id       uint16   366 [22, 22, 35, 35, 36, ... ]
13 :spring   uint8      2 {0=>366, 1=>366}
14 :female   uint8      2 {1=>180, 0=>552}
15 :black    uint8      2 {0=>578, 1=>154}
16 :white    uint8      2 {0=>178, 1=>554}
17 :ctrmgpa  double   217 [nil, 0.75, nil, -0.600000023841858, nil, ... ], 366 nils
18 :ctothrs  uint8     16 [nil, 12, nil, 15, nil, ... ], 366 nils
19 :ccrsgpa  double   362 [nil, -0.138700008392334, nil, 0.0160000324249268, nil, ... ], 366 nils
20 :ccrspop  double   366 [nil, -62.25, nil, -73.25, nil, ... ], 366 nils
 ... 3 more Vectors ...
Rdatasets: wooldridge: happiness, happiness
RedAmber::DataFrame : 17137 x 33 Vectors
Vectors : 24 numeric, 9 strings
#  key          type   level data_preview
1  :year        uint16     7 [1994, 1994, 1994, 1994, 1994, ... ]
2  :workstat    string     9 ["keeping house", "working fulltime", "working fulltime", "working fulltime", "working parttime", ... ], 3 nils
3  :prestige    uint8     60 [46, 22, 29, 42, 36, ... ], 854 nils
4  :divorce     string     3 {nil=>7383, "no"=>7421, "yes"=>2333}
5  :widowed     string     3 {"iap"=>10718, nil=>6041, "yes"=>378}
6  :educ        uint8     22 [12, 12, 12, 8, 13, ... ], 44 nils
7  :reg16       string    10 ["middle atlantic", "foreign", "foreign", "foreign", "middle atlantic", ... ]
8  :babies      uint8      7 [2, 0, 0, 0, 0, ... ], 101 nils
9  :preteen     uint8      8 [3, 0, 0, 0, 1, ... ], 101 nils
10 :teens       uint8      8 [0, 0, 0, 0, 1, ... ], 88 nils
11 :income      string    13 ["$10000 - 14999", nil, "$15000 - 19999", "$15000 - 19999", "$10000 - 14999", ... ], 2092 nils
12 :region      string     9 ["middle atlantic", "middle atlantic", "middle atlantic", "middle atlantic", "middle atlantic", ... ]
13 :attend      string    10 ["sevrl times a yr", "every week", "more thn once wk", "once a year", "once a year", ... ], 273 nils
14 :happy       string     3 {"pretty happy"=>9791, "very happy"=>5260, "not too happy"=>2086}
15 :owngun      string     3 {nil=>5840, "iap"=>7180, "yes"=>4117}
16 :tvhours     uint8     23 [2, 3, 1, 3, nil, ... ], 5343 nils
17 :vhappy      uint8      2 {0=>11877, 1=>5260}
18 :mothfath16  uint8      3 {1=>11872, 0=>5260, nil=>5}
19 :black       uint8      2 {1=>2372, 0=>14765}
20 :gwbush04    uint8      3 {nil=>15207, 0=>962, 1=>968}
 ... 13 more Vectors ...
Rdatasets: wooldridge: hseinv, hseinv
RedAmber::DataFrame : 42 x 14 Vectors
Vectors : 14 numeric
#  key       type   level data_preview
1  :year     uint16    42 [1947, 1948, 1949, 1950, 1951, ... ]
2  :inv      uint32    42 [54864, 64717, 63150, 86014, 70610, ... ]
3  :pop      uint32    42 [144126, 146631, 149188, 151684, 154287, ... ]
4  :price    double    40 [0.819000005722046, 0.86489999294281, 0.845600008964539, 0.876500010490417, 0.881900012493134, ... ]
5  :linv     double    42 [10.9126129150391, 11.0777788162231, 11.0532684326172, 11.362265586853, 11.164927482605, ... ]
6  :lpop     double    42 [11.8784427642822, 11.8956747055054, 11.9129629135132, 11.92955493927, 11.946569442749, ... ]
7  :lprice   double    40 [-0.199671193957329, -0.145141392946243, -0.167708829045296, -0.131818562746048, -0.125676587224007, ... ]
8  :t        uint8     42 [1, 2, 3, 4, 5, ... ]
9  :invpc    double    42 [0.38066691160202, 0.441359609365463, 0.42329141497612, 0.567060470581055, 0.4576535820961, ... ]
10 :linvpc   double    42 [-0.965830504894257, -0.817895293235779, -0.859694421291351, -0.567289352416992, -0.781642735004425, ... ]
11 :lprice_1 double    40 [nil, -0.199671193957329, -0.145141392946243, -0.167708829045296, -0.131818562746048, ... ], 1 nil
12 :linvpc_1 double    42 [nil, -0.965830504894257, -0.817895293235779, -0.859694421291351, -0.567289352416992, ... ], 1 nil
13 :gprice   double    41 [nil, 0.0545298010110855, -0.0225674360990524, 0.0358902662992477, 0.00614197552204132, ... ], 1 nil
14 :ginvpc   double    42 [nil, 0.147935211658478, -0.0417991280555725, 0.292405068874359, -0.214353382587433, ... ], 1 nil
Rdatasets: wooldridge: injury, injury
RedAmber::DataFrame : 7150 x 30 Vectors
Vectors : 30 numeric
#  key       type   level data_preview
1  :durat    double   134 [1.0, 1.0, 84.0, 4.0, 1.0, ... ]
2  :afchnge  uint8      2 {1=>3384, 0=>3766}
3  :highearn uint8      2 {1=>2852, 0=>4298}
4  :male     uint8      3 {1=>5569, 0=>1565, nil=>16}
5  :married  uint8      3 {0=>2109, 1=>4744, nil=>297}
6  :hosp     uint8      2 {1=>1874, 0=>5276}
7  :indust   uint8      4 {3=>4085, 1=>2001, 2=>1039, nil=>25}
8  :injtype  uint8      8 [1, 1, 1, 1, 1, ... ]
9  :age      uint8     69 [26, 31, 37, 31, 23, ... ], 4 nils
10 :prewage  double  1136 [404.950012207031, 643.825012207031, 398.125, 527.799987792969, 528.9375, ... ]
11 :totmed   double  3677 [1187.5732421875, 361.078552246094, 8963.6572265625, 1099.64831542969, 372.801879882812, ... ]
12 :injdes   uint16   389 [1010, 1404, 1032, 1940, 1940, ... ]
13 :benefit  double   445 [246.837493896484, 246.837493896484, 246.837493896484, 246.837493896484, 211.574996948242, ... ]
14 :ky       uint8      2 {1=>5626, 0=>1524}
15 :mi       uint8      2 {0=>5626, 1=>1524}
16 :ldurat   double   134 [0.0, 0.0, 4.43081665039062, 1.3862943649292, 0.0, ... ]
17 :afhigh   uint8      2 {1=>1380, 0=>5770}
18 :lprewage double  1136 [6.0037636756897, 6.46742677688599, 5.98676586151123, 6.26871728897095, 6.27087020874023, ... ]
19 :lage     double    69 [3.25809645652771, 3.43398714065552, 3.61091780662537, 3.43398714065552, 3.13549423217773, ... ], 4 nils
20 :ltotmed  double  3677 [7.07966709136963, 5.88909530639648, 9.10093402862549, 7.00274562835693, 5.92104721069336, ... ]
 ... 10 more Vectors ...
Rdatasets: wooldridge: intdef, intdef
RedAmber::DataFrame : 56 x 13 Vectors
Vectors : 13 numeric
#  key    type   level data_preview
1  :year  uint16    56 [1948, 1949, 1950, 1951, 1952, ... ]
2  :i3    double    55 [1.03999996185303, 1.10000002384186, 1.22000002861023, 1.54999995231628, 1.76999998092651, ... ]
3  :inf   double    40 [8.10000038146973, -1.20000004768372, 1.29999995231628, 7.90000009536743, 1.89999997615814, ... ]
4  :rec   double    29 [16.2000007629395, 14.5, 14.3999996185303, 16.1000003814697, 19.0, ... ]
5  :out   double    40 [11.6000003814697, 14.3000001907349, 15.6000003814697, 14.1999998092651, 19.3999996185303, ... ]
6  :def   double    48 [-4.60000038146973, -0.199999809265137, 1.20000076293945, -1.90000057220459, 0.399999618530273, ... ]
7  :i3_1  double    55 [nil, 1.03999996185303, 1.10000002384186, 1.22000002861023, 1.54999995231628, ... ], 1 nil
8  :inf_1 double    41 [nil, 8.10000038146973, -1.20000004768372, 1.29999995231628, 7.90000009536743, ... ], 1 nil
9  :def_1 double    49 [nil, -4.60000038146973, -0.199999809265137, 1.20000076293945, -1.90000057220459, ... ], 1 nil
10 :ci3   double    56 [nil, 0.0600000619888306, 0.120000004768372, 0.329999923706055, 0.220000028610229, ... ], 1 nil
11 :cinf  double    50 [nil, -9.30000019073486, 2.5, 6.60000038146973, -6.0, ... ], 1 nil
12 :cdef  double    44 [nil, 4.40000057220459, 1.40000057220459, -3.10000133514404, 2.30000019073486, ... ], 1 nil
13 :y77   uint8      2 {0=>29, 1=>27}
Rdatasets: wooldridge: intqrt, intqrt
RedAmber::DataFrame : 124 x 23 Vectors
Vectors : 23 numeric
#  key       type   level data_preview
1  :r3       double   116 [2.76999998092651, 2.97000002861023, 4.0, 4.59999990463257, 4.15999984741211, ... ]
2  :r6       double   119 [3.01999998092651, 3.4300000667572, 4.32000017166138, 4.67999982833862, 4.32999992370605, ... ]
3  :r12      double   112 [3.3199999332428, 3.67000007629395, 4.40999984741211, 4.75, 4.38000011444092, ... ]
4  :p3       double   116 [9931.4130859375, 9926.498046875, 9901.2587890625, 9886.615234375, 9897.349609375, ... ]
5  :p6       double   119 [9851.6474609375, 9831.845703125, 9789.1337890625, 9771.962890625, 9788.65625, ... ]
6  :hy6      double   124 [nil, 0.759777367115021, 0.706002593040466, 0.995812773704529, 1.28312730789185, ... ], 1 nil
7  :hy3      double   116 [0.690602719783783, 0.740465760231018, 0.997260272502899, 1.14684927463531, 1.03715062141418, ... ]
8  :spr63    double    92 [0.25, 0.460000038146973, 0.320000171661377, 0.0799999237060547, 0.170000076293945, ... ]
9  :hy3_1    double   116 [nil, 0.690602719783783, 0.740465760231018, 0.997260272502899, 1.14684927463531, ... ], 1 nil
10 :hy6_1    double   123 [nil, nil, 0.759777367115021, 0.706002593040466, 0.995812773704529, ... ], 2 nils
11 :spr63_1  double    92 [nil, 0.25, 0.460000038146973, 0.320000171661377, 0.0799999237060547, ... ], 1 nil
12 :hy6hy3_1 double   124 [nil, 0.0691746473312378, -0.0344631671905518, -0.00144749879837036, 0.136278033256531, ... ], 1 nil
13 :cr3      double   120 [nil, 0.200000047683716, 1.02999997138977, 0.599999904632568, -0.440000057220459, ... ], 1 nil
14 :r3_1     double   116 [nil, 2.76999998092651, 2.97000002861023, 4.0, 4.59999990463257, ... ], 1 nil
15 :chy6     double   123 [nil, nil, -0.0537747740745544, 0.289810180664062, 0.287314534187317, ... ], 2 nils
16 :chy3     double   121 [nil, 0.0498630404472351, 0.256794512271881, 0.149589002132416, -0.10969865322113, ... ], 1 nil
17 :chy6_1   double   122 [nil, nil, nil, -0.0537747740745544, 0.289810180664062, ... ], 3 nils
18 :chy3_1   double   120 [nil, nil, 0.0498630404472351, 0.256794512271881, 0.149589002132416, ... ], 2 nils
19 :cr6      double   117 [nil, 0.410000085830688, 0.890000104904175, 0.359999656677246, -0.349999904632568, ... ], 1 nil
20 :cr6_1    double   116 [nil, nil, 0.410000085830688, 0.890000104904175, 0.359999656677246, ... ], 2 nils
 ... 3 more Vectors ...
Rdatasets: wooldridge: inven, inven
RedAmber::DataFrame : 37 x 13 Vectors
Vectors : 13 numeric
#  key     type   level data_preview
1  :year   uint16    37 [1959, 1960, 1961, 1962, 1963, ... ]
2  :i3     double    37 [3.41000008583069, 2.9300000667572, 2.38000011444092, 2.77999997138977, 3.16000008583069, ... ]
3  :inf    double    30 [0.699999988079071, 1.70000004768372, 1.0, 1.0, 1.29999995231628, ... ]
4  :inven  double    37 [401.399993896484, 412.0, 420.899993896484, 440.899993896484, 459.0, ... ]
5  :gdp    double    37 [2212.30004882812, 2261.69995117188, 2309.80004882812, 2449.10009765625, 2554.0, ... ]
6  :r3     double    36 [2.71000003814697, 1.23000001907349, 1.38000011444092, 1.77999997138977, 1.8600001335144, ... ]
7  :cinven double    37 [nil, 10.6000061035156, 8.89999389648438, 20.0, 18.1000061035156, ... ], 1 nil
8  :cgdp   double    37 [nil, 49.39990234375, 48.10009765625, 139.300048828125, 104.89990234375, ... ], 1 nil
9  :cr3    double    36 [nil, -1.48000001907349, 0.150000095367432, 0.399999856948853, 0.0800001621246338, ... ], 1 nil
10 :ci3    double    37 [nil, -0.480000019073486, -0.549999952316284, 0.399999856948853, 0.380000114440918, ... ], 1 nil
11 :cinf   double    33 [nil, 1.0, -0.700000047683716, 0.0, 0.299999952316284, ... ], 1 nil
12 :ginven double    37 [nil, 0.0260649286210537, 0.0213719122111797, 0.0464228168129921, 0.0402321331202984, ... ], 1 nil
13 :ggdp   double    37 [nil, 0.0220840014517307, 0.0210442412644625, 0.0585596896708012, 0.0419401079416275, ... ], 1 nil
Rdatasets: wooldridge: jtrain, jtrain
RedAmber::DataFrame : 471 x 30 Vectors
Vectors : 30 numeric
#  key       type   level data_preview
1  :year     uint16     3 {1987=>157, 1988=>157, 1989=>157}
2  :fcode    uint32   157 [410032, 410032, 410032, 410440, 410440, ... ]
3  :employ   uint16   126 [100, 131, 123, 12, 13, ... ], 31 nils
4  :sales    double   260 [47000000.0, 43000000.0, 49000000.0, 1560000.0, 1970000.0, ... ], 98 nils
5  :avgsal   uint16   231 [35000, 37000, 39000, 10500, 11000, ... ], 65 nils
6  :scrap    double   101 [nil, nil, nil, nil, nil, ... ], 309 nils
7  :rework   double    66 [nil, nil, nil, nil, nil, ... ], 348 nils
8  :tothrs   uint16    67 [12, 8, 8, 12, 12, ... ], 56 nils
9  :union    uint8      2 {0=>378, 1=>93}
10 :grant    uint8      2 {0=>405, 1=>66}
11 :d89      uint8      2 {0=>314, 1=>157}
12 :d88      uint8      2 {0=>314, 1=>157}
13 :totrain  uint16    77 [100, 50, 50, 12, 13, ... ], 6 nils
14 :hrsemp   double   178 [12.0, 3.05343508720398, 3.25203251838684, 12.0, 12.0, ... ], 81 nils
15 :lscrap   double   101 [nil, nil, nil, nil, nil, ... ], 309 nils
16 :lemploy  double   126 [4.60517024993896, 4.8751974105835, 4.81218433380127, 2.4849066734314, 2.56494927406311, ... ], 31 nils
17 :lsales   double   260 [17.6656589508057, 17.5767097473145, 17.7073307037354, 14.260196685791, 14.4935436248779, ... ], 98 nils
18 :lrework  double    65 [nil, nil, nil, nil, nil, ... ], 350 nils
19 :lhrsemp  double   178 [2.56494927406311, 1.39956474304199, 1.44739711284637, 2.56494927406311, 2.56494927406311, ... ], 81 nils
20 :lscrap_1 double    72 [nil, nil, nil, nil, nil, ... ], 363 nils
 ... 10 more Vectors ...
Rdatasets: wooldridge: lawsch85, lawsch85
RedAmber::DataFrame : 156 x 21 Vectors
Vectors : 21 numeric
#  key      type   level data_preview
1  :rank    uint8    154 [128, 104, 34, 49, 95, ... ]
2  :salary  uint32   108 [31400, 33098, 32870, 35000, 33606, ... ], 8 nils
3  :cost    uint16   144 [8340, 6980, 16370, 17566, 8350, ... ], 6 nils
4  :LSAT    uint8     25 [155, 160, 155, 157, 162, ... ], 6 nils
5  :GPA     double    54 [3.15000009536743, 3.5, 3.25, 3.20000004768372, 3.38000011444092, ... ], 7 nils
6  :libvol  uint16   109 [216, 256, 424, 329, 332, ... ], 1 nil
7  :faculty uint8     81 [45, 44, 78, 136, 56, ... ], 4 nils
8  :age     uint8     71 [12, 113, 134, 89, 70, ... ], 45 nils
9  :clsize  uint16   123 [210, 190, 270, 277, 150, ... ], 3 nils
10 :north   uint8      2 {1=>32, 0=>124}
11 :south   uint8      2 {0=>118, 1=>38}
12 :east    uint8      2 {0=>108, 1=>48}
13 :west    uint8      2 {0=>118, 1=>38}
14 :lsalary double   108 [10.3545627593994, 10.4072284698486, 10.400315284729, 10.4631032943726, 10.422459602356, ... ], 8 nils
15 :studfac double   144 [4.66666650772095, 4.31818199157715, 3.46153855323792, 2.03676462173462, 2.67857146263123, ... ], 6 nils
16 :top10   uint8      2 {0=>146, 1=>10}
17 :r11_25  uint8      2 {0=>140, 1=>16}
18 :r26_40  uint8      2 {0=>143, 1=>13}
19 :r41_60  uint8      2 {0=>138, 1=>18}
20 :llibvol double   109 [5.37527847290039, 5.5451774597168, 6.04973363876343, 5.79605770111084, 5.80513477325439, ... ], 1 nil
 ... 1 more Vector ...
Rdatasets: wooldridge: loanapp, loanapp
RedAmber::DataFrame : 1989 x 59 Vectors
Vectors : 59 numeric
#  key       type   level data_preview
1  :occ      uint8      3 {1=>1932, 2=>51, 3=>6}
2  :loanamt  uint16   294 [89, 128, 128, 66, 120, ... ]
3  :action   uint8      3 {1=>1684, 3=>244, 2=>61}
4  :msa      uint16     1 {1120=>1989}
5  :suffolk  uint8      2 {0=>1682, 1=>307}
6  :appinc   uint16   228 [72, 74, 84, 36, 59, ... ]
7  :typur    uint8      8 [0, 0, 3, 0, 8, ... ]
8  :unit     uint8      5 {1=>1814, 2=>110, nil=>4, 3=>50, 4=>11}
9  :married  uint8      3 {0=>678, 1=>1308, nil=>3}
10 :dep      uint8     10 [0, 1, 0, 0, 0, ... ], 3 nils
11 :emp      uint8      4 {0=>1803, 1=>147, 6=>27, 9=>12}
12 :yjob     uint8      4 {0=>1364, 1=>581, 6=>28, 9=>16}
13 :self     uint8      2 {0=>1732, 1=>257}
14 :atotinc  uint32  1349 [5849, 4583, 2666, 3000, 2583, ... ]
15 :cototinc double   808 [0.0, 1508.0, 4416.0, 0.0, 2358.0, ... ]
16 :hexp     double  1259 [1031.0, 1391.0, 1371.0, 839.0, 1341.0, ... ]
17 :price    double   458 [118.0, 160.0, 143.0, 110.0, 134.0, ... ]
18 :other    double    57 [0.0, 0.0, 0.0, 0.0, 0.0, ... ]
19 :liq      double   634 [34.5, 52.0, 37.0, 19.0, 31.0, ... ]
20 :rep      uint8     10 [1, 3, 6, 1, 1, ... ], 9 nils
 ... 39 more Vectors ...
Rdatasets: wooldridge: lowbrth, lowbrth
RedAmber::DataFrame : 100 x 36 Vectors
Vectors : 34 numeric, 2 strings
#  key       type   level data_preview
1  :year     uint16     2 {1987=>50, 1990=>50}
2  :lowbrth  double    37 [8.0, 8.39999961853027, 4.80000019073486, 4.80000019073486, 6.40000009536743, ... ]
3  :infmort  double    50 [12.1999998092651, 10.8000001907349, 10.3999996185303, 10.5, 9.5, ... ]
4  :afdcprt  uint16    82 [132, 132, 19, 24, 91, ... ]
5  :popul    uint16   100 [4084, 4041, 524, 550, 3400, ... ]
6  :pcinc    uint16   100 [12039, 14899, 18461, 20867, 14322, ... ]
7  :physic   uint16    74 [151, 158, 138, 146, 191, ... ]
8  :afdcprc  double   100 [3.2321252822876, 3.26651811599731, 3.62595415115356, 4.36363649368286, 2.67647051811218, ... ]
9  :d90      uint8      2 {0=>50, 1=>50}
10 :lpcinc   double   100 [9.39590644836426, 9.60904979705811, 9.82341575622559, 9.94592380523682, 9.56955242156982, ... ]
11 :cafdcprc double    51 [nil, 0.0343928337097168, nil, 0.737682342529297, nil, ... ], 50 nils
12 :clpcinc  double    51 [nil, 0.213143348693848, nil, 0.12250804901123, nil, ... ], 50 nils
13 :lphysic  double    74 [5.01727962493896, 5.06259489059448, 4.92725372314453, 4.98360681533813, 5.25227355957031, ... ]
14 :clphysic double    49 [nil, 0.0453152656555176, nil, 0.0563530921936035, nil, ... ], 50 nils
15 :clowbrth double    21 [nil, 0.399999618530273, nil, 0.0, nil, ... ], 50 nils
16 :cinfmort double    37 [nil, -1.39999961853027, nil, 0.100000381469727, nil, ... ], 50 nils
17 :afdcpay  uint16    90 [114, 115, 567, 651, 268, ... ]
18 :afdcinc  double   100 [0.946922481060028, 0.771863877773285, 3.07133960723877, 3.11975836753845, 1.87124705314636, ... ]
19 :lafdcpay double    90 [4.73619842529297, 4.74493217468262, 6.34035921096802, 6.47850942611694, 5.59098720550537, ... ]
20 :clafdcpy double    48 [nil, 0.00873374938964844, nil, 0.138150215148926, nil, ... ], 50 nils
 ... 16 more Vectors ...
Rdatasets: wooldridge: mathpnl, mathpnl
RedAmber::DataFrame : 3850 x 52 Vectors
Vectors : 52 numeric
#  key       type   level data_preview
1  :distid   uint32   550 [1010, 1010, 1010, 1010, 1010, ... ]
2  :intid    uint8     57 [4, 4, 4, 4, 4, ... ]
3  :lunch    double  2150 [36.2999992370605, 39.2000007629395, 38.5999984741211, 37.4099998474121, 40.7900009155273, ... ]
4  :enrol    uint32  2731 [1089, 1100, 1011, 995, 1008, ... ]
5  :ptr      double   180 [nil, nil, nil, 20.3999996185303, 19.1000003814697, ... ], 1650 nils
6  :found    uint16  1281 [nil, nil, nil, 5245, 5398, ... ], 1650 nils
7  :expp     uint16  2534 [4227, 4809, 5214, 6019, 6155, ... ]
8  :revpp    uint16  1559 [nil, nil, nil, 7186, 7374, ... ], 1650 nils
9  :avgsal   uint32  3617 [31854, 34361, 32351, 44852, 46603, ... ]
10 :drop     double   821 [7.0, 10.1000003814697, 12.3000001907349, 1.73000001907349, 7.36999988555908, ... ], 84 nils
11 :grad     double   586 [75.1999969482422, 64.6999969482422, 58.5999984741211, 94.8000030517578, 77.4000015258789, ... ], 211 nils
12 :math4    double   704 [28.7999992370605, 32.2999992370605, 39.0999984741211, 68.0, 68.4000015258789, ... ]
13 :math7    double   698 [43.4000015258789, 49.2999992370605, 36.5, 54.7000007629395, 55.4000015258789, ... ], 24 nils
14 :choice   uint16   119 [nil, nil, nil, nil, nil, ... ], 2750 nils
15 :psa      uint16   103 [nil, nil, nil, 0, 0, ... ], 2591 nils
16 :year     uint16     7 [1992, 1993, 1994, 1995, 1996, ... ]
17 :staff    double   611 [101.199996948242, 99.6999969482422, 110.800003051758, nil, nil, ... ], 2200 nils
18 :avgben   uint16  1464 [6098, 8532, 9983, nil, nil, ... ], 2205 nils
19 :y92      uint8      2 {1=>550, 0=>3300}
20 :y93      uint8      2 {0=>3300, 1=>550}
 ... 32 more Vectors ...
Rdatasets: wooldridge: minwage, minwage
RedAmber::DataFrame : 612 x 58 Vectors
Vectors : 58 numeric
#  key        type   level data_preview
1  :emp232    double   504 [270.600006103516, 272.399993896484, 268.600006103516, 262.600006103516, 258.0, ... ]
2  :wage232   double   298 [0.860000014305115, 0.860000014305115, 0.860000014305115, 0.860000014305115, 0.870000004768372, ... ]
3  :emp236    double   303 [53.0999984741211, 54.7999992370605, 52.9000015258789, 48.2999992370605, 47.5999984741211, ... ]
4  :wage236   double   327 [0.990000009536743, 1.0, 0.980000019073486, 0.910000026226044, 0.930000007152557, ... ]
5  :emp234    double   398 [93.4000015258789, 94.5999984741211, 95.4000015258789, 95.1999969482422, 96.3000030517578, ... ]
6  :wage234   double   333 [0.920000016689301, 0.920000016689301, 0.910000026226044, 0.920000016689301, 0.920000016689301, ... ]
7  :emp314    double   499 [253.899993896484, 256.600006103516, 256.899993896484, 253.800003051758, 245.800003051758, ... ]
8  :wage314   double   341 [0.990000009536743, 0.980000019073486, 0.990000009536743, 0.990000009536743, 0.990000009536743, ... ]
9  :emp228    double   394 [185.300003051758, 184.699996948242, 182.199996948242, 179.600006103516, 173.800003051758, ... ]
10 :wage228   double   326 [0.910000026226044, 0.939999997615814, 0.980000019073486, 0.980000019073486, 0.980000019073486, ... ]
11 :emp233    double   487 [346.5, 357.600006103516, 358.200012207031, 326.700012207031, 302.799987792969, ... ]
12 :wage233   double   325 [1.54999995231628, 1.57000005245209, 1.53999996185303, 1.41999995708466, 1.37999999523163, ... ]
13 :emp394    double   383 [79.5, 79.5, 79.5999984741211, 78.1999969482422, 76.1999969482422, ... ]
14 :wage394   double   357 [1.02999997138977, 1.03999996185303, 1.04999995231628, 1.04999995231628, 1.05999994277954, ... ]
15 :emp231    double   440 [143.699996948242, 145.800003051758, 146.600006103516, 145.899993896484, 145.699996948242, ... ]
16 :wage231   double   321 [1.26999998092651, 1.26999998092651, 1.26999998092651, 1.25, 1.25, ... ]
17 :emp226    double   306 [90.5999984741211, 90.6999969482422, 90.5999984741211, 89.4000015258789, 88.5999984741211, ... ]
18 :wage226   double   362 [1.07000005245209, 1.08000004291534, 1.10000002384186, 1.12999999523163, 1.12000000476837, ... ]
19 :emp387    double   247 [41.9000015258789, 42.4000015258789, 42.0, 41.7000007629395, 41.5999984741211, ... ]
20 :wage387   double   361 [1.07000005245209, 1.07000005245209, 1.08000004291534, 1.0900000333786, 1.10000002384186, ... ]
 ... 38 more Vectors ...
Rdatasets: wooldridge: mlb1, mlb1
RedAmber::DataFrame : 353 x 47 Vectors
Vectors : 47 numeric
#  key       type   level data_preview
1  :salary   double   213 [6329213.0, 3375000.0, 3100000.0, 2900000.0, 1650000.0, ... ]
2  :teamsal  uint32    28 [38407380, 38407380, 38407380, 38407380, 38407380, ... ]
3  :nl       uint8      2 {1=>168, 0=>185}
4  :years    uint8     19 [12, 8, 5, 8, 12, ... ]
5  :games    uint16   307 [1705, 918, 751, 1056, 1196, ... ]
6  :atbats   uint16   345 [6705, 3333, 2807, 3337, 3603, ... ]
7  :runs     uint16   265 [1076, 407, 370, 405, 437, ... ]
8  :hits     uint16   305 [1939, 863, 840, 816, 928, ... ]
9  :doubles  uint16   192 [320, 156, 148, 143, 19, ... ]
10 :triples  uint8     65 [67, 38, 18, 18, 16, ... ]
11 :hruns    uint16   139 [231, 73, 46, 107, 124, ... ]
12 :rbis     uint16   265 [836, 342, 355, 421, 541, ... ]
13 :bavg     double   113 [289.0, 259.0, 299.0, 245.0, 258.0, ... ]
14 :bb       uint16   241 [619, 137, 341, 306, 316, ... ]
15 :so       uint16   274 [948, 582, 228, 653, 725, ... ]
16 :sbases   uint16   131 [314, 133, 41, 15, 32, ... ]
17 :fldperc  uint16    61 [989, 968, 994, 971, 977, ... ]
18 :frstbase uint8      2 {0=>308, 1=>45}
19 :scndbase uint8      2 {1=>37, 0=>316}
20 :shrtstop uint8      2 {0=>304, 1=>49}
 ... 27 more Vectors ...
Rdatasets: wooldridge: murder, murder
RedAmber::DataFrame : 153 x 13 Vectors
Vectors : 12 numeric, 1 string
#  key      type   level data_preview
1  :id      uint8     51 [1, 1, 1, 2, 2, ... ]
2  :state   string    51 ["AL", "AL", "AL", "AK", "AK", ... ]
3  :year    uint8      3 {87=>51, 90=>51, 93=>51}
4  :mrdrte  double    93 [9.30000019073486, 11.6000003814697, 11.6000003814697, 10.1000003814697, 7.5, ... ]
5  :exec    uint8     13 [2, 5, 2, 0, 0, ... ]
6  :unem    double    63 [7.80000019073486, 6.80000019073486, 7.5, 10.8000001907349, 6.90000009536743, ... ]
7  :d90     uint8      2 {0=>102, 1=>51}
8  :d93     uint8      2 {0=>102, 1=>51}
9  :cmrdrte double    81 [nil, 2.30000019073486, 0.0, nil, -2.60000038146973, ... ], 51 nils
10 :cexec   int8      14 [nil, 3, -3, nil, 0, ... ], 51 nils
11 :cunem   int8       9 [nil, -1, 0, nil, -3, ... ], 51 nils
12 :cexec_1 int8      10 [nil, nil, 3, nil, nil, ... ], 102 nils
13 :cunem_1 int8       9 [nil, nil, -1, nil, nil, ... ], 102 nils
Rdatasets: wooldridge: nbasal, nbasal
RedAmber::DataFrame : 269 x 22 Vectors
Vectors : 22 numeric
#  key       type   level data_preview
1  :marr     uint8      2 {1=>119, 0=>150}
2  :wage     double   180 [1002.5, 2030.0, 650.0, 2030.0, 755.0, ... ]
3  :exper    uint8     15 [4, 5, 1, 5, 3, ... ]
4  :age      uint8     18 [27, 28, 25, 28, 24, ... ]
5  :coll     uint8      5 {4=>220, 0=>7, 3=>37, 2=>4, 1=>1}
6  :games    uint8     58 [77, 78, 74, 47, 82, ... ]
7  :minutes  uint16   254 [2867, 2789, 1149, 1178, 2096, ... ]
8  :guard    uint8      2 {1=>113, 0=>156}
9  :forward  uint8      2 {0=>159, 1=>110}
10 :center   uint8      2 {0=>223, 1=>46}
11 :points   double   159 [15.5, 13.3000001907349, 5.5, 7.30000019073486, 10.8000001907349, ... ]
12 :rebounds double    91 [3.90000009536743, 2.5, 3.29999995231628, 5.09999990463257, 4.30000019073486, ... ]
13 :assists  double    72 [4.5, 8.80000019073486, 0.200000002980232, 1.5, 2.59999990463257, ... ]
14 :draft    uint8     60 [19, 28, 19, 1, 24, ... ], 29 nils
15 :allstar  uint8      2 {0=>238, 1=>31}
16 :avgmin   double   265 [37.2337608337402, 35.7564086914062, 15.5270299911499, 25.0638294219971, 25.5609798431396, ... ]
17 :lwage    double   180 [6.9102520942688, 7.61579084396362, 6.47697305679321, 7.61579084396362, 6.62671804428101, ... ]
18 :black    uint8      2 {1=>217, 0=>52}
19 :children uint8      2 {0=>176, 1=>93}
20 :expersq  uint16    15 [16, 25, 1, 25, 9, ... ]
 ... 2 more Vectors ...
Rdatasets: wooldridge: nyse, nyse
RedAmber::DataFrame : 691 x 8 Vectors
Vectors : 8 numeric
# key       type   level data_preview
1 :price    double   653 [49.75, 51.439998626709, 52.0499992370605, 52.2799987792969, 54.2400016784668, ... ]
2 :return   double   691 [nil, 3.39698219299316, 1.18584883213043, 0.44188192486763, 3.74904918670654, ... ], 1 nil
3 :return_1 double   690 [nil, nil, 3.39698219299316, 1.18584883213043, 0.44188192486763, ... ], 2 nils
4 :t        uint16   691 [1, 2, 3, 4, 5, ... ]
5 :price_1  double   653 [nil, 49.75, 51.439998626709, 52.0499992370605, 52.2799987792969, ... ], 1 nil
6 :price_2  double   652 [nil, nil, 49.75, 51.439998626709, 52.0499992370605, ... ], 2 nils
7 :cprice   double   550 [nil, 1.68999862670898, 0.610000610351562, 0.229999542236328, 1.96000289916992, ... ], 1 nil
8 :cprice_1 double   549 [nil, nil, 1.68999862670898, 0.610000610351562, 0.229999542236328, ... ], 2 nils
Rdatasets: wooldridge: okun, okun
RedAmber::DataFrame : 47 x 4 Vectors
Vectors : 4 numeric
# key     type   level data_preview
1 :year   uint16    47 [1959, 1960, 1961, 1962, 1963, ... ]
2 :pcrgdp double    32 [7.09999990463257, 2.5, 2.29999995231628, 6.09999990463257, 4.40000009536743, ... ]
3 :unem   double    32 [5.5, 5.5, 6.69999980926514, 5.5, 5.69999980926514, ... ]
4 :cunem  double    29 [nil, 0.0, 1.19999980926514, -1.19999980926514, 0.199999809265137, ... ], 1 nil
Rdatasets: wooldridge: pension, pension
RedAmber::DataFrame : 194 x 19 Vectors
Vectors : 19 numeric
#  key       type   level data_preview
1  :id       uint16   171 [38, 152, 152, 182, 222, ... ]
2  :pyears   uint8     36 [1, 6, 25, 20, 35, ... ], 3 nils
3  :prftshr  uint8      2 {0=>154, 1=>40}
4  :choice   uint8      2 {1=>119, 0=>75}
5  :female   uint8      2 {0=>77, 1=>117}
6  :married  uint8      2 {1=>147, 0=>47}
7  :age      uint8     19 [64, 56, 56, 63, 67, ... ]
8  :educ     uint8     11 [12, 13, 12, 12, 12, ... ]
9  :finc25   uint8      2 {0=>154, 1=>40}
10 :finc35   uint8      2 {0=>160, 1=>34}
11 :finc50   uint8      2 {1=>46, 0=>148}
12 :finc75   uint8      2 {0=>168, 1=>26}
13 :finc100  uint8      2 {0=>168, 1=>26}
14 :finc101  uint8      2 {0=>182, 1=>12}
15 :wealth89 double   164 [77.9000015258789, 154.899993896484, 154.899993896484, 232.5, 179.0, ... ]
16 :black    uint8      2 {0=>172, 1=>22}
17 :stckin89 uint8      2 {1=>66, 0=>128}
18 :irain89  uint8      2 {1=>100, 0=>94}
19 :pctstck  uint8      3 {0=>64, 50=>72, 100=>58}
Rdatasets: wooldridge: phillips, phillips
RedAmber::DataFrame : 56 x 7 Vectors
Vectors : 7 numeric
# key     type   level data_preview
1 :year   uint16    56 [1948, 1949, 1950, 1951, 1952, ... ]
2 :unem   double    37 [3.79999995231628, 5.90000009536743, 5.30000019073486, 3.29999995231628, 3.0, ... ]
3 :inf    double    40 [8.10000038146973, -1.20000004768372, 1.29999995231628, 7.90000009536743, 1.89999997615814, ... ]
4 :inf_1  double    41 [nil, 8.10000038146973, -1.20000004768372, 1.29999995231628, 7.90000009536743, ... ], 1 nil
5 :unem_1 double    37 [nil, 3.79999995231628, 5.90000009536743, 5.30000019073486, 3.29999995231628, ... ], 1 nil
6 :cinf   double    50 [nil, -9.30000019073486, 2.5, 6.60000038146973, -6.0, ... ], 1 nil
7 :cunem  double    37 [nil, 2.10000014305115, -0.599999904632568, -2.00000023841858, -0.299999952316284, ... ], 1 nil
Rdatasets: wooldridge: prminwge, prminwge
RedAmber::DataFrame : 38 x 25 Vectors
Vectors : 25 numeric
#  key       type   level data_preview
1  :year     uint16    38 [1950, 1951, 1952, 1953, 1954, ... ]
2  :avgmin   double    34 [0.197999998927116, 0.209000006318092, 0.224999994039536, 0.310999989509583, 0.312999993562698, ... ]
3  :avgwage  double    38 [0.398000001907349, 0.409999996423721, 0.421000003814697, 0.479999989271164, 0.508000016212463, ... ]
4  :kaitz    double    35 [0.155000001192093, 0.164000004529953, 0.180000007152557, 0.229000002145767, 0.210999995470047, ... ]
5  :avgcov   double    35 [0.20100000500679, 0.207000002264977, 0.225999996066093, 0.231000006198883, 0.224000006914139, ... ]
6  :covt     double     8 [0.28999999165535, 0.28999999165535, 0.28999999165535, 0.28999999165535, 0.28999999165535, ... ]
7  :mfgwage  double    38 [0.430000007152557, 0.449999988079071, 0.479999989271164, 0.5, 0.519999980926514, ... ]
8  :prdef    double    38 [0.859000027179718, 0.880999982357025, 0.953000009059906, 0.970000028610229, 1.0, ... ]
9  :prepop   double    31 [0.469999998807907, 0.449000000953674, 0.433999985456467, 0.428000003099442, 0.41499999165535, ... ]
10 :prepopf  double    31 [0.469999998807907, 0.449000000953674, 0.433999985456467, 0.428000003099442, 0.41499999165535, ... ]
11 :prgnp    double    38 [878.700012207031, 925.0, 1015.90002441406, 1081.30004882812, 1104.40002441406, ... ]
12 :prunemp  double    30 [15.3999996185303, 16.0, 14.8000001907349, 14.5, 15.2999992370605, ... ]
13 :usgnp    double    38 [1203.69995117188, 1328.19995117188, 1380.0, 1435.30004882812, 1416.19995117188, ... ]
14 :t        uint8     38 [1, 2, 3, 4, 5, ... ]
15 :post74   uint8     15 [0, 0, 0, 0, 0, ... ]
16 :lprunemp double    30 [2.73436737060547, 2.7725887298584, 2.69462728500366, 2.67414855957031, 2.7278528213501, ... ]
17 :lprgnp   double    38 [6.77844333648682, 6.82979393005371, 6.92353010177612, 6.98591947555542, 7.00705766677856, ... ]
18 :lusgnp   double    38 [7.09315538406372, 7.19157981872559, 7.22983884811401, 7.26912927627563, 7.25573253631592, ... ]
19 :lkaitz   double    35 [-1.86433017253876, -1.80788886547089, -1.71479833126068, -1.4740332365036, -1.55589711666107, ... ]
20 :lprun_1  double    30 [nil, -1.87080264091492, -1.83258152008057, -1.9105429649353, -1.93102157115936, ... ], 1 nil
 ... 5 more Vectors ...
Rdatasets: wooldridge: rental, rental
RedAmber::DataFrame : 128 x 23 Vectors
Vectors : 23 numeric
#  key       type   level data_preview
1  :city     uint8     64 [1, 1, 2, 2, 3, ... ]
2  :year     uint8      2 {80=>64, 90=>64}
3  :pop      uint32   128 [75211, 77759, 106743, 141865, 36608, ... ]
4  :enroll   uint32   126 [15303, 18017, 22462, 29769, 11847, ... ]
5  :rent     uint16   103 [197, 342, 323, 496, 216, ... ]
6  :rnthsg   uint32   127 [13475, 15660, 14580, 26895, 7026, ... ]
7  :tothsg   uint32   127 [26167, 29467, 37277, 55540, 13482, ... ]
8  :avginc   uint16   128 [11537, 19568, 19841, 31885, 11455, ... ]
9  :lenroll  double   126 [9.63580417633057, 9.79907131195068, 10.0195798873901, 10.3012228012085, 9.3798303604126, ... ]
10 :lpop     double   128 [11.2280530929565, 11.2613697052002, 11.578179359436, 11.8626308441162, 10.5080223083496, ... ]
11 :lrent    double   103 [5.28320360183716, 5.83481073379517, 5.77765226364136, 6.20657587051392, 5.37527847290039, ... ]
12 :ltothsg  double   127 [10.1722545623779, 10.2910261154175, 10.5261316299438, 10.924859046936, 9.50911045074463, ... ]
13 :lrnthsg  double   127 [9.5085916519165, 9.65886497497559, 9.58740615844727, 10.1996955871582, 8.85737323760986, ... ]
14 :lavginc  double   128 [9.35331439971924, 9.88165092468262, 9.89550590515137, 10.369891166687, 9.34618186950684, ... ]
15 :clenroll double    65 [nil, -15293.201171875, nil, -22451.69921875, nil, ... ], 64 nils
16 :clpop    double    65 [nil, 0.0333166122436523, nil, 0.284451484680176, nil, ... ], 64 nils
17 :clrent   double    64 [nil, 0.551607131958008, nil, 0.428923606872559, nil, ... ], 64 nils
18 :cltothsg double    65 [nil, 0.118771553039551, nil, 0.398727416992188, nil, ... ], 64 nils
19 :clrnthsg double    65 [nil, 0.150273323059082, nil, 0.612289428710938, nil, ... ], 64 nils
20 :clavginc double    65 [nil, 0.528336524963379, nil, 0.474385261535645, nil, ... ], 64 nils
 ... 3 more Vectors ...
Rdatasets: wooldridge: school93_98, school93_98
RedAmber::DataFrame : 10668 x 18 Vectors
Vectors : 18 numeric
#  key        type   level data_preview
1  :distid    uint32   525 [34010, 34010, 34010, 34010, 34010, ... ]
2  :schid     uint16  1778 [1, 1, 1, 1, 1, ... ]
3  :lunch     double  5085 [39.7999992370605, 35.0, 36.5900001525879, 40.5499992370605, 49.4900016784668, ... ], 303 nils
4  :enrol     uint16   954 [256, 248, 244, 247, 291, ... ], 169 nils
5  :exppp     uint16  3332 [2506, 2870, 4176, 4333, 3666, ... ], 937 nils
6  :math4     double   899 [46.5999984741211, 44.7000007629395, 86.5, 84.3000030517578, 83.8000030517578, ... ], 103 nils
7  :year      uint16     6 [1993, 1994, 1995, 1996, 1997, ... ]
8  :y93       uint8      2 {1=>1778, 0=>8890}
9  :y94       uint8      2 {0=>8890, 1=>1778}
10 :y95       uint8      2 {0=>8890, 1=>1778}
11 :y96       uint8      2 {0=>8890, 1=>1778}
12 :y97       uint8      2 {0=>8890, 1=>1778}
13 :y98       uint8      2 {0=>8890, 1=>1778}
14 :rexpp     double  6868 [2783.48095703125, 3108.19848632812, 4397.953125, 4432.4189453125, 3666.0, ... ], 937 nils
15 :found     uint16  1259 [nil, nil, 4478, 4754, 5032, ... ], 3556 nils
16 :lenrol    double   954 [5.5451774597168, 5.51342868804932, 5.49716806411743, 5.50938844680786, 5.67332315444946, ... ], 169 nils
17 :lrexpp    double  6848 [7.93145751953125, 8.04179859161377, 8.38889408111572, 8.39670085906982, 8.2068567276001, ... ], 937 nils
18 :lavgrexpp double  7450 [nil, 7.98814916610718, 8.23033142089844, 8.3928050994873, 8.30627727508545, ... ], 3151 nils
Rdatasets: wooldridge: traffic2, traffic2
RedAmber::DataFrame : 108 x 48 Vectors
Vectors : 48 numeric
#  key       type   level data_preview
1  :year     uint16     9 [1981, 1981, 1981, 1981, 1981, ... ]
2  :totacc   uint16   108 [40511, 36034, 40328, 37699, 38816, ... ]
3  :fatacc   uint16    79 [365, 329, 369, 369, 355, ... ]
4  :injacc   uint16   108 [15626, 14469, 16026, 15560, 16546, ... ]
5  :pdoacc   uint16   107 [24520, 21236, 23933, 21770, 21915, ... ]
6  :ntotacc  uint16   107 [38235, 33989, 37990, 35457, 36611, ... ]
7  :nfatacc  uint16    81 [323, 294, 335, 326, 321, ... ]
8  :ninjacc  uint16   108 [14743, 13620, 15105, 14654, 15569, ... ]
9  :npdoacc  uint16   108 [23169, 20075, 22550, 20477, 20721, ... ]
10 :rtotacc  uint16    93 [236, 200, 253, 270, 263, ... ]
11 :rfatacc  uint8     23 [12, 8, 12, 14, 6, ... ]
12 :rinjacc  uint16    80 [99, 101, 110, 123, 136, ... ]
13 :rpdoacc  uint16    75 [125, 91, 131, 133, 121, ... ]
14 :ushigh   uint16   100 [1057, 934, 1143, 1009, 1082, ... ]
15 :cntyrds  uint16   103 [6838, 6057, 6803, 6314, 6746, ... ]
16 :strtes   uint16   106 [3474, 3123, 3458, 3202, 3334, ... ]
17 :t        uint8    108 [1, 2, 3, 4, 5, ... ]
18 :tsq      uint16   108 [1, 4, 9, 16, 25, ... ]
19 :unem     double    54 [7.90000009536743, 8.0, 7.40000009536743, 7.19999980926514, 6.09999990463257, ... ]
20 :spdlaw   uint8      2 {0=>76, 1=>32}
 ... 28 more Vectors ...
Rdatasets: wooldridge: volat, volat
RedAmber::DataFrame : 558 x 17 Vectors
Vectors : 17 numeric
#  key     type   level data_preview
1  :date   double   558 [1947.01000976562, 1947.02001953125, 1947.03002929688, 1947.0400390625, 1947.05004882812, ... ]
2  :sp500  double   549 [15.210000038147, 15.8000001907349, 15.1599998474121, 14.6000003814697, 14.3400001525879, ... ]
3  :divyld double   276 [4.48999977111816, 4.38000011444092, 4.6100001335144, 4.75, 5.05000019073486, ... ]
4  :i3     double   411 [0.379999995231628, 0.379999995231628, 0.379999995231628, 0.379999995231628, 0.379999995231628, ... ]
5  :ip     double   376 [22.3999996185303, 22.5, 22.6000003814697, 22.5, 22.6000003814697, ... ]
6  :pcsp   double   558 [nil, 46.5483322143555, -48.6076202392578, -44.3271369934082, -21.3698806762695, ... ], 1 nil
7  :rsp500 double   558 [nil, 50.9283332824707, -43.9976196289062, -39.5771369934082, -16.319881439209, ... ], 1 nil
8  :pcip   double   515 [nil, 5.35716342926025, 5.33335399627686, -5.30975437164307, 5.33335399627686, ... ], 1 nil
9  :ci3    double   259 [nil, 0.0, 0.0, 0.0, 0.0, ... ], 1 nil
10 :ci3_1  double   259 [nil, nil, 0.0, 0.0, 0.0, ... ], 2 nils
11 :ci3_2  double   259 [nil, nil, nil, 0.0, 0.0, ... ], 3 nils
12 :pcip_1 double   514 [nil, nil, 5.35716342926025, 5.33335399627686, -5.30975437164307, ... ], 2 nils
13 :pcip_2 double   513 [nil, nil, nil, 5.35716342926025, 5.33335399627686, ... ], 3 nils
14 :pcip_3 double   512 [nil, nil, nil, nil, 5.35716342926025, ... ], 4 nils
15 :pcsp_1 double   557 [nil, nil, 46.5483322143555, -48.6076202392578, -44.3271369934082, ... ], 2 nils
16 :pcsp_2 double   556 [nil, nil, nil, 46.5483322143555, -48.6076202392578, ... ], 3 nils
17 :pcsp_3 double   555 [nil, nil, nil, nil, 46.5483322143555, ... ], 4 nils
Rdatasets: wooldridge: vote2, vote2
RedAmber::DataFrame : 186 x 26 Vectors
Vectors : 25 numeric, 1 string
#  key       type   level data_preview
1  :state    string    36 ["AL", "AL", "AL", "AK", "AZ", ... ]
2  :district uint8     36 [2, 3, 7, 1, 2, ... ]
3  :democ    uint8      2 {0=>70, 1=>116}
4  :vote90   uint8     40 [51, 74, 71, 52, 66, ... ]
5  :vote88   uint8     43 [94, 65, 68, 62, 73, ... ]
6  :inexp90  uint32   186 [596096, 176550, 238446, 564759, 112373, ... ]
7  :chexp90  uint32   186 [163663, 22989, 58952, 164732, 1445, ... ]
8  :inexp88  uint32   186 [234923, 679297, 328296, 626377, 99607, ... ]
9  :chexp88  uint32   158 [nil, 443927, 8737, 402477, 3065, ... ], 29 nils
10 :prtystr  uint8     47 [62, 65, 41, 60, 55, ... ]
11 :rptchall uint8      2 {0=>150, 1=>36}
12 :tenure   uint8     26 [26, 1, 4, 17, 29, ... ], 9 nils
13 :lawyer   uint8      3 {1=>78, 0=>99, nil=>9}
14 :linexp90 double   186 [13.2981567382812, 12.0813598632812, 12.3818979263306, 13.2441539764404, 11.6295785903931, ... ]
15 :lchexp90 double   186 [12.0055646896362, 10.0427713394165, 10.9844789505005, 12.0120754241943, 7.27586460113525, ... ]
16 :linexp88 double   186 [12.3670129776001, 13.4288139343262, 12.7016706466675, 13.3477077484131, 11.5089874267578, ... ]
17 :lchexp88 double   158 [nil, 13.0034151077271, 9.07532215118408, 12.9053936004639, 8.02780246734619, ... ], 29 nils
18 :incshr90 double   186 [78.4585647583008, 88.4789428710938, 80.1774063110352, 77.4182281494141, 98.7304306030273, ... ]
19 :incshr88 double   158 [nil, 60.4774284362793, 97.4076690673828, 60.8810386657715, 97.014762878418, ... ], 29 nils
20 :cvote    int8      42 [-43, 9, 3, -10, -7, ... ]
 ... 6 more Vectors ...
Rdatasets: wooldridge: voucher, voucher
RedAmber::DataFrame : 990 x 19 Vectors
Vectors : 19 numeric
#  key         type   level data_preview
1  :studyid    uint16   990 [21, 26, 30, 31, 33, ... ]
2  :black      uint8      2 {1=>668, 0=>322}
3  :hispanic   uint8      2 {0=>836, 1=>154}
4  :female     uint8      2 {1=>516, 0=>474}
5  :appyear    uint8      4 {90=>453, 91=>203, 93=>152, 92=>182}
6  :mnce       uint8     70 [44, 46, 20, 36, 32, ... ]
7  :select     uint8      2 {1=>522, 0=>468}
8  :choice     uint8      2 {0=>520, 1=>470}
9  :selectyrs  uint8      5 {4=>108, 3=>150, 1=>116, 2=>148, 0=>468}
10 :choiceyrs  uint8      5 {1=>211, 4=>56, 3=>111, 2=>122, 0=>490}
11 :mnce90     uint8     56 [nil, nil, nil, nil, nil, ... ], 662 nils
12 :selectyrs1 uint8      2 {0=>874, 1=>116}
13 :selectyrs2 uint8      2 {0=>842, 1=>148}
14 :selectyrs3 uint8      2 {0=>840, 1=>150}
15 :selectyrs4 uint8      2 {1=>108, 0=>882}
16 :choiceyrs1 uint8      2 {1=>211, 0=>779}
17 :choiceyrs2 uint8      2 {0=>868, 1=>122}
18 :choiceyrs3 uint8      2 {0=>879, 1=>111}
19 :choiceyrs4 uint8      2 {0=>934, 1=>56}
Rdatasets: wooldridge: wage2, wage2
RedAmber::DataFrame : 935 x 17 Vectors
Vectors : 17 numeric
#  key      type   level data_preview
1  :wage    uint16   449 [769, 808, 825, 650, 562, ... ]
2  :hours   uint8     37 [40, 50, 40, 40, 40, ... ]
3  :IQ      uint8     80 [93, 119, 108, 96, 74, ... ]
4  :KWW     uint8     42 [35, 41, 46, 32, 27, ... ]
5  :educ    uint8     10 [12, 18, 14, 12, 11, ... ]
6  :exper   uint8     22 [11, 11, 11, 13, 14, ... ]
7  :tenure  uint8     23 [2, 16, 9, 7, 5, ... ]
8  :age     uint8     11 [31, 37, 33, 32, 34, ... ]
9  :married uint8      2 {1=>835, 0=>100}
10 :black   uint8      2 {0=>815, 1=>120}
11 :south   uint8      2 {0=>616, 1=>319}
12 :urban   uint8      2 {1=>671, 0=>264}
13 :sibs    uint8     15 [1, 1, 1, 4, 10, ... ]
14 :brthord uint8     11 [2, nil, 2, 3, 6, ... ], 83 nils
15 :meduc   uint8     20 [8, 14, 14, 12, 6, ... ], 78 nils
16 :feduc   uint8     19 [8, 14, 14, 12, 11, ... ], 194 nils
17 :lwage   double   449 [6.64509105682373, 6.69456195831299, 6.71538352966309, 6.47697257995605, 6.33150196075439, ... ]
Rdatasets: wooldridge: wageprc, wageprc
RedAmber::DataFrame : 286 x 20 Vectors
Vectors : 20 numeric
#  key       type   level data_preview
1  :price    double   277 [92.5999984741211, 92.5, 92.5999984741211, 92.6999969482422, 92.6999969482422, ... ]
2  :wage     double   237 [2.3199999332428, 2.3199999332428, 2.3199999332428, 2.33999991416931, 2.34999990463257, ... ]
3  :t        uint16   286 [1, 2, 3, 4, 5, ... ]
4  :lprice   double   277 [4.52828931808472, 4.52720880508423, 4.52828931808472, 4.52936840057373, 4.52936840057373, ... ]
5  :lwage    double   237 [0.841567158699036, 0.841567158699036, 0.841567158699036, 0.850150883197784, 0.85441529750824, ... ]
6  :gprice   double   279 [nil, -0.00108051300048828, 0.00108051300048828, 0.00107908248901367, 0.0, ... ], 1 nil
7  :gwage    double   245 [nil, 0.0, 0.0, 0.00858372449874878, 0.00426441431045532, ... ], 1 nil
8  :gwage_1  double   244 [nil, nil, 0.0, 0.0, 0.00858372449874878, ... ], 2 nils
9  :gwage_2  double   243 [nil, nil, nil, 0.0, 0.0, ... ], 3 nils
10 :gwage_3  double   242 [nil, nil, nil, nil, 0.0, ... ], 4 nils
11 :gwage_4  double   242 [nil, nil, nil, nil, nil, ... ], 5 nils
12 :gwage_5  double   241 [nil, nil, nil, nil, nil, ... ], 6 nils
13 :gwage_6  double   240 [nil, nil, nil, nil, nil, ... ], 7 nils
14 :gwage_7  double   239 [nil, nil, nil, nil, nil, ... ], 8 nils
15 :gwage_8  double   239 [nil, nil, nil, nil, nil, ... ], 9 nils
16 :gwage_9  double   238 [nil, nil, nil, nil, nil, ... ], 10 nils
17 :gwage_10 double   237 [nil, nil, nil, nil, nil, ... ], 11 nils
18 :gwage_11 double   236 [nil, nil, nil, nil, nil, ... ], 12 nils
19 :gwage_12 double   235 [nil, nil, nil, nil, nil, ... ], 13 nils
20 :gprice_1 double   278 [nil, nil, -0.00108051300048828, 0.00108051300048828, 0.00107908248901367, ... ], 2 nils
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment