Last active
April 4, 2019 13:16
-
-
Save hhl60492/99a3a5e8c29fc57e87e6df816fa9f805 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.datasets import * | |
from sklearn import tree | |
from sklearn.metrics import roc_curve, auc | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import label_binarize | |
n_classes = 3 | |
wine = load_wine() | |
clf = tree.DecisionTreeClassifier() | |
train_x, test_x, train_y, test_y =train_test_split(wine.data, wine.target, | |
test_size=0.2, random_state=666) | |
# binarize class labels to plot ROC | |
train_y = label_binarize(train_y, classes=[0, 1, 2]) | |
test_y = label_binarize(test_y, classes=[0, 1, 2]) | |
y_score = clf.fit(train_x, train_y).predict(test_x) | |
fpr = dict() | |
tpr = dict() | |
roc_auc = dict() | |
for i in range(n_classes): | |
fpr[i], tpr[i], _ = roc_curve(test_y[:, i], y_score[:, i]) | |
roc_auc[i] = auc(fpr[i], tpr[i]) | |
# Compute micro-average ROC curve and ROC area | |
fpr["micro"], tpr["micro"], _ = roc_curve(test_y.ravel(), y_score.ravel()) | |
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) | |
#ROC curve for a specific class here for all classes | |
print(roc_auc) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment