Forked from Mahedi-61/cuda_11.8_installation_on_Ubuntu_22.04
Last active
July 2, 2024 19:18
-
-
Save hibetterheyj/1cda35255a53d7fe191377ed47345d73 to your computer and use it in GitHub Desktop.
Instructions for CUDA v11.3 and cuDNN 8.1 installation on Ubuntu 20.04 for Pytorch 1.10
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
### steps #### | |
# verify the system has a cuda-capable gpu | |
# download and install the nvidia cuda toolkit and cudnn | |
# setup environmental variables | |
# verify the installation | |
### | |
### to verify your gpu is cuda enable check | |
lspci | grep -i nvidia | |
### If you have previous installation remove it first. | |
sudo apt-get purge nvidia* | |
sudo apt remove nvidia-* | |
sudo rm /etc/apt/sources.list.d/cuda* | |
sudo apt-get autoremove && sudo apt-get autoclean | |
sudo rm -rf /usr/local/cuda* | |
# system update | |
sudo apt-get update | |
sudo apt-get upgrade | |
# install other import packages | |
sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev | |
# first get the PPA repository driver | |
sudo add-apt-repository ppa:graphics-drivers/ppa | |
sudo apt update | |
# install nvidia driver with dependencies | |
sudo apt install libnvidia-common-470 | |
sudo apt install libnvidia-gl-470 | |
sudo apt install nvidia-driver-470 | |
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub | |
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda.list | |
sudo apt-get update | |
# installing CUDA-11.3 | |
sudo apt install cuda-11-3 (with pytorch 1.10.0) | |
# setup your paths | |
echo 'export PATH=/usr/local/cuda-11.2/bin:$PATH' >> ~/.bashrc | |
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc | |
source ~/.bashrc | |
sudo ldconfig | |
# https://developer.nvidia.com/rdp/cudnn-archive | |
# install cuDNN v11.2 | |
# For downloading cuDNN v11.2 you have to be regeistered here https://developer.nvidia.com/developer-program/signup | |
# CUDNN_TAR_FILE="cudnn-11.2-linux-x64-v8.1.1.33.tgz" | |
# wget https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.1.1.33/11.2_20210301/cudnn-11.2-linux-x64-v8.1.1.33.tgz | |
CUDNN_TAR_FILE="cudnn-11.3-linux-x64-v8.2.0.53.tgz" | |
# wget https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.2.0.53/11.3_04222021/cudnn-11.3-linux-x64-v8.2.0.53.tgz | |
tar -xzvf ${CUDNN_TAR_FILE} | |
# copy the following files into the cuda toolkit directory. | |
# sudo cp -P cuda/include/cudnn.h /usr/local/cuda-11.2/include | |
# sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-11.2/lib64/ | |
# sudo chmod a+r /usr/local/cuda-11.2/lib64/libcudnn* | |
sudo cp -P cuda/include/cudnn.h /usr/local/cuda-11.3/include | |
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-11.3/lib64/ | |
sudo chmod a+r /usr/local/cuda-11.3/lib64/libcudnn* | |
# Finally, to verify the installation, check | |
nvidia-smi | |
nvcc -V | |
# install Pytorch (an open source machine learning framework) | |
# pip install torch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 | |
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment