Last active
August 29, 2015 14:08
-
-
Save hiendv/8de2dbe2b17d3fb3c2ea to your computer and use it in GitHub Desktop.
solve modular congruence ax ≡ b (mod n)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* author: hiendv | |
* with the help of: locbq, lampt | |
* email: [email protected] | |
* date: 05-11-2014 | |
* compiler: gcc, g++ | |
*/ | |
#include <stdio.h> | |
#include <stdbool.h> // boolean support for C | |
int a,b,n,gcd; | |
int dvd[100],dvs[100],r[100],s[100]; | |
int at,bt,nt,temp,i,x0; | |
int count = 0; | |
void import(bool dev){ | |
if(dev){ | |
a = 179; | |
b = 669; | |
n = 867; | |
} else { | |
printf("%s\n", "ax ≡ b (mod n)"); | |
printf("%s\n", "Input a b n"); | |
scanf("%d %d %d",&a, &b, &n); | |
} | |
at = a; | |
bt = b; | |
nt = n; | |
} | |
bool checkDivisible(){ | |
if(b % gcd != 0) return false; else return true; | |
} | |
void simplify(){ | |
if(at > nt){ | |
at = at % nt; | |
} | |
} | |
void drawTable1(){ | |
printf("n\ta\tq\tr\n"); | |
while(nt % at >=0){ | |
printf("%d\t%d\t%d\t%d\n",nt,at,nt/at,nt % at); | |
if(nt % at == 0){ | |
gcd = at; | |
break; | |
} else{ | |
dvd[count] = nt; | |
dvs[count] = at; | |
count++; | |
} | |
temp = nt; | |
nt = at; | |
at = temp % at; | |
} | |
} | |
void makePositive(){ | |
while(x0 < 0) x0 = x0 + (n/gcd); | |
} | |
void x0Caculation(){ | |
printf("gcd = d = n*s + a*r"); | |
printf("\ndvd\ts\tdvs\tr\n"); | |
s[count-1] = 1; | |
for(i = count-1;i>=0;i--){ | |
r[i] = (gcd - dvd[i]*s[i])/dvs[i]; | |
printf("%d\t%d\t%d\t%d\n",dvd[i], s[i], dvs[i], r[i]); | |
s[i-1] = r[i]; | |
} | |
if(a > 1){ | |
x0 = ((r[i+1]*b)/gcd) % n; | |
} else { | |
x0 = b; | |
} | |
makePositive(); | |
printf("\nx0 = r*b/d = %d*%d/%d = %d (mod %d)\n",r[i+1],b,gcd,x0,n/gcd); | |
} | |
void printResult(){ | |
printf("\nx = {"); | |
for(i = gcd ;i>0;i--){ | |
printf("%d ",x0); | |
x0 = x0 + n / gcd; | |
} | |
printf("}\n"); | |
} | |
void printGCD(){ | |
printf("\n%s: %d\n", "GCD", gcd); | |
} | |
main(){ | |
import(false);// {'dev': true} -> use default values and skip the import process; | |
simplify(); | |
drawTable1(); | |
printGCD(); | |
if(!checkDivisible()){ | |
printf("Not divisible. No solution\n"); | |
} else { | |
x0Caculation(); | |
printResult(); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment