Created
August 19, 2019 07:27
-
-
Save higumachan/ce81f499349e2665059fe3931f7226c1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
import tvm | |
from chainer import Variable | |
from chainer.links import ResNet50Layers | |
from tvm import relay | |
from tvm.contrib import graph_runtime | |
import numpy as np | |
import torch | |
import torchvision | |
from benchmarker import Benchmarker | |
from torchvision.models import inception, resnet50 | |
from hirundo.onnx import get_network | |
loop = 1 | |
data_shape = (1, 3, 224, 224) | |
with Benchmarker(loop, width=20, cycle=3, extra=1) as bench: | |
@bench('pytorch') | |
def _(bm): | |
x = torch.randn(*data_shape, requires_grad=True) | |
resnet = resnet50() | |
with bm: | |
resnet(x) | |
@bench('chainer') | |
def _(bm): | |
resnet = ResNet50Layers(None) | |
x = np.random.randn(*data_shape).astype(np.float32) | |
with bm: | |
resnet.forward(x) | |
@bench('chainer ideep') | |
def _(bm): | |
resnet = ResNet50Layers(None) | |
resnet.to_intel64() | |
x = Variable(np.random.randn(*data_shape).astype(np.float32)) | |
x.to_intel64() | |
with bm: | |
resnet.forward(x) | |
@bench('chainerx') | |
def _(bm): | |
resnet = ResNet50Layers(None) | |
resnet.to_chx() | |
x = Variable(np.random.randn(*data_shape).astype(np.float32)) | |
x.to_chx() | |
with bm: | |
resnet.forward(x) | |
@bench("tvm tuned") | |
def _(bm): | |
# load the module back. | |
temp = Path("resnet50") | |
loaded_json = open(temp / "deploy_graph.json").read() | |
loaded_lib = tvm.module.load(str(temp / "deploy_lib.tar")) | |
loaded_params = bytearray(open((temp / "deploy_param.params"), "rb").read()) | |
input_data = tvm.nd.array(np.random.uniform(size=data_shape).astype("float32")) | |
module = graph_runtime.create(loaded_json, loaded_lib, tvm.cpu()) | |
module.load_params(loaded_params) | |
with bm: | |
module.run(**{"gpu_0/data_0": input_data}) | |
out_deploy = module.get_output(0).asnumpy() | |
@bench("tvm avx") | |
def _(bm): | |
# load the module back. | |
target = "llvm -mcpu=skylake-avx512" | |
net, params = get_network({ | |
"onnx_file": "test_assets/resnet50/model.onnx", | |
"input_name": "gpu_0/data_0" | |
}, data_shape, "float32") | |
input_data = tvm.nd.array(np.random.uniform(size=data_shape).astype("float32")) | |
with relay.build_config(opt_level=3): | |
graph, lib, params = relay.build_module.build(net, target=target, params=params) | |
module = graph_runtime.create(graph, lib, tvm.cpu()) | |
#module.load_params(params) | |
with bm: | |
module.run(**{"gpu_0/data_0": input_data}) | |
out_deploy = module.get_output(0).asnumpy() | |
@bench("tvm llvm") | |
def _(bm): | |
# load the module back. | |
target = "llvm" | |
net, params = get_network({ | |
"onnx_file": "test_assets/resnet50/model.onnx", | |
"input_name": "gpu_0/data_0" | |
}, data_shape, "float32") | |
input_data = tvm.nd.array(np.random.uniform(size=data_shape).astype("float32")) | |
with relay.build_config(opt_level=3): | |
graph, lib, params = relay.build_module.build(net, target=target, params=params) | |
module = graph_runtime.create(graph, lib, tvm.cpu()) | |
#module.load_params(params) | |
with bm: | |
module.run(**{"gpu_0/data_0": input_data}) | |
out_deploy = module.get_output(0).asnumpy() | |
if __name__ == '__main__': | |
pass |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment