Skip to content

Instantly share code, notes, and snippets.

@himkt
Created June 16, 2020 13:49
Show Gist options
  • Save himkt/41590fa9315a2f58ddf53d5db1ca76df to your computer and use it in GitHub Desktop.
Save himkt/41590fa9315a2f58ddf53d5db1ca76df to your computer and use it in GitHub Desktop.
____________________________ test_dump_best_config _____________________________
def test_dump_best_config() -> None:
with tempfile.TemporaryDirectory() as tmp_dir:
def objective(trial: optuna.Trial) -> float:
trial.suggest_uniform("DROPOUT", dropout, dropout)
executor = optuna.integration.AllenNLPExecutor(trial, input_config_file, tmp_dir)
return executor.run()
dropout = 0.5
input_config_file = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "example.jsonnet"
)
output_config_file = os.path.join(tmp_dir, "result.json")
study = optuna.create_study(direction="maximize")
> study.optimize(objective, n_trials=1)
tests/integration_tests/allennlp_tests/test_allennlp.py:142:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
optuna/study.py:334: in optimize
func, n_trials, timeout, catch, callbacks, gc_after_trial, None
optuna/study.py:677: in _optimize_sequential
self._run_trial_and_callbacks(func, catch, callbacks, gc_after_trial)
optuna/study.py:708: in _run_trial_and_callbacks
trial = self._run_trial(func, catch, gc_after_trial)
optuna/study.py:732: in _run_trial
result = func(trial)
tests/integration_tests/allennlp_tests/test_allennlp.py:133: in objective
return executor.run()
optuna/integration/allennlp.py:128: in run
allennlp.commands.train.train_model(params, self._serialization_dir)
venv/lib/python3.6/site-packages/allennlp/commands/train.py:230: in train_model
dry_run=dry_run,
venv/lib/python3.6/site-packages/allennlp/commands/train.py:418: in _train_worker
params=params, serialization_dir=serialization_dir, local_rank=process_rank,
venv/lib/python3.6/site-packages/allennlp/common/from_params.py:580: in from_params
**extras,
venv/lib/python3.6/site-packages/allennlp/common/from_params.py:611: in from_params
return constructor_to_call(**kwargs) # type: ignore
venv/lib/python3.6/site-packages/allennlp/commands/train.py:644: in from_partial_objects
data_loader_ = data_loader.construct(dataset=datasets["train"])
venv/lib/python3.6/site-packages/allennlp/common/lazy.py:46: in construct
return self._constructor(**kwargs)
venv/lib/python3.6/site-packages/allennlp/common/from_params.py:446: in constructor
return value_cls.from_params(params=deepcopy(popped_params), **constructor_extras)
venv/lib/python3.6/site-packages/allennlp/common/from_params.py:580: in from_params
**extras,
venv/lib/python3.6/site-packages/allennlp/common/from_params.py:611: in from_params
return constructor_to_call(**kwargs) # type: ignore
venv/lib/python3.6/site-packages/allennlp/data/dataloader.py:143: in from_partial_objects
batches_per_epoch=batches_per_epoch,
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <allennlp.data.dataloader.DataLoader object at 0x7facbc494400>
dataset = <allennlp.data.dataset_readers.dataset_reader.AllennlpDataset object at 0x7facbc4ea4e0>
batch_size = 32, shuffle = False, sampler = None, batch_sampler = None
num_workers = 0, collate_fn = <function allennlp_collate at 0x7faceeec3950>
pin_memory = False, drop_last = False, timeout = 0, worker_init_fn = None
multiprocessing_context = None, batches_per_epoch = None
def __init__(
self,
dataset: data.Dataset,
batch_size: int = 1,
shuffle: bool = False,
sampler: Sampler = None,
batch_sampler: BatchSampler = None,
num_workers: int = 0,
# NOTE: The default for collate_fn is different from the normal `None`.
# We assume that if you are using this class you are using an
# allennlp dataset of instances, which would require this.
collate_fn=allennlp_collate,
pin_memory: bool = False,
drop_last: bool = False,
timeout: int = 0,
worker_init_fn=None,
multiprocessing_context: str = None,
batches_per_epoch: int = None,
):
super().__init__(
dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
sampler=sampler,
batch_sampler=batch_sampler,
num_workers=num_workers,
collate_fn=collate_fn,
pin_memory=pin_memory,
drop_last=drop_last,
timeout=timeout,
worker_init_fn=worker_init_fn,
> multiprocessing_context=multiprocessing_context,
)
E TypeError: intercept_args() got an unexpected keyword argument 'multiprocessing_context'
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment