Created
June 16, 2020 13:49
-
-
Save himkt/41590fa9315a2f58ddf53d5db1ca76df to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
____________________________ test_dump_best_config _____________________________ | |
def test_dump_best_config() -> None: | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
def objective(trial: optuna.Trial) -> float: | |
trial.suggest_uniform("DROPOUT", dropout, dropout) | |
executor = optuna.integration.AllenNLPExecutor(trial, input_config_file, tmp_dir) | |
return executor.run() | |
dropout = 0.5 | |
input_config_file = os.path.join( | |
os.path.dirname(os.path.realpath(__file__)), "example.jsonnet" | |
) | |
output_config_file = os.path.join(tmp_dir, "result.json") | |
study = optuna.create_study(direction="maximize") | |
> study.optimize(objective, n_trials=1) | |
tests/integration_tests/allennlp_tests/test_allennlp.py:142: | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
optuna/study.py:334: in optimize | |
func, n_trials, timeout, catch, callbacks, gc_after_trial, None | |
optuna/study.py:677: in _optimize_sequential | |
self._run_trial_and_callbacks(func, catch, callbacks, gc_after_trial) | |
optuna/study.py:708: in _run_trial_and_callbacks | |
trial = self._run_trial(func, catch, gc_after_trial) | |
optuna/study.py:732: in _run_trial | |
result = func(trial) | |
tests/integration_tests/allennlp_tests/test_allennlp.py:133: in objective | |
return executor.run() | |
optuna/integration/allennlp.py:128: in run | |
allennlp.commands.train.train_model(params, self._serialization_dir) | |
venv/lib/python3.6/site-packages/allennlp/commands/train.py:230: in train_model | |
dry_run=dry_run, | |
venv/lib/python3.6/site-packages/allennlp/commands/train.py:418: in _train_worker | |
params=params, serialization_dir=serialization_dir, local_rank=process_rank, | |
venv/lib/python3.6/site-packages/allennlp/common/from_params.py:580: in from_params | |
**extras, | |
venv/lib/python3.6/site-packages/allennlp/common/from_params.py:611: in from_params | |
return constructor_to_call(**kwargs) # type: ignore | |
venv/lib/python3.6/site-packages/allennlp/commands/train.py:644: in from_partial_objects | |
data_loader_ = data_loader.construct(dataset=datasets["train"]) | |
venv/lib/python3.6/site-packages/allennlp/common/lazy.py:46: in construct | |
return self._constructor(**kwargs) | |
venv/lib/python3.6/site-packages/allennlp/common/from_params.py:446: in constructor | |
return value_cls.from_params(params=deepcopy(popped_params), **constructor_extras) | |
venv/lib/python3.6/site-packages/allennlp/common/from_params.py:580: in from_params | |
**extras, | |
venv/lib/python3.6/site-packages/allennlp/common/from_params.py:611: in from_params | |
return constructor_to_call(**kwargs) # type: ignore | |
venv/lib/python3.6/site-packages/allennlp/data/dataloader.py:143: in from_partial_objects | |
batches_per_epoch=batches_per_epoch, | |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
self = <allennlp.data.dataloader.DataLoader object at 0x7facbc494400> | |
dataset = <allennlp.data.dataset_readers.dataset_reader.AllennlpDataset object at 0x7facbc4ea4e0> | |
batch_size = 32, shuffle = False, sampler = None, batch_sampler = None | |
num_workers = 0, collate_fn = <function allennlp_collate at 0x7faceeec3950> | |
pin_memory = False, drop_last = False, timeout = 0, worker_init_fn = None | |
multiprocessing_context = None, batches_per_epoch = None | |
def __init__( | |
self, | |
dataset: data.Dataset, | |
batch_size: int = 1, | |
shuffle: bool = False, | |
sampler: Sampler = None, | |
batch_sampler: BatchSampler = None, | |
num_workers: int = 0, | |
# NOTE: The default for collate_fn is different from the normal `None`. | |
# We assume that if you are using this class you are using an | |
# allennlp dataset of instances, which would require this. | |
collate_fn=allennlp_collate, | |
pin_memory: bool = False, | |
drop_last: bool = False, | |
timeout: int = 0, | |
worker_init_fn=None, | |
multiprocessing_context: str = None, | |
batches_per_epoch: int = None, | |
): | |
super().__init__( | |
dataset=dataset, | |
batch_size=batch_size, | |
shuffle=shuffle, | |
sampler=sampler, | |
batch_sampler=batch_sampler, | |
num_workers=num_workers, | |
collate_fn=collate_fn, | |
pin_memory=pin_memory, | |
drop_last=drop_last, | |
timeout=timeout, | |
worker_init_fn=worker_init_fn, | |
> multiprocessing_context=multiprocessing_context, | |
) | |
E TypeError: intercept_args() got an unexpected keyword argument 'multiprocessing_context' | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment