Created
June 29, 2022 23:46
-
-
Save himself65/a5163f506ec39d707a9bc494cd49b783 to your computer and use it in GitHub Desktop.
throw error
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
INFO: 192.168.31.144:52267 - "POST /sentence_classification HTTP/1.1" 500 Internal Server Error | |
ERROR: Exception in ASGI application | |
Traceback (most recent call last): | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/uvicorn/protocols/http/httptools_impl.py", line 401, in run_asgi | |
result = await app(self.scope, self.receive, self.send) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/uvicorn/middleware/proxy_headers.py", line 78, in __call__ | |
return await self.app(scope, receive, send) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/fastapi/applications.py", line 269, in __call__ | |
await super().__call__(scope, receive, send) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/starlette/applications.py", line 124, in __call__ | |
await self.middleware_stack(scope, receive, send) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/starlette/middleware/errors.py", line 184, in __call__ | |
raise exc | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/starlette/middleware/errors.py", line 162, in __call__ | |
await self.app(scope, receive, _send) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/starlette/middleware/cors.py", line 84, in __call__ | |
await self.app(scope, receive, send) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/starlette/exceptions.py", line 93, in __call__ | |
raise exc | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/starlette/exceptions.py", line 82, in __call__ | |
await self.app(scope, receive, sender) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/fastapi/middleware/asyncexitstack.py", line 21, in __call__ | |
raise e | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/fastapi/middleware/asyncexitstack.py", line 18, in __call__ | |
await self.app(scope, receive, send) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/starlette/routing.py", line 670, in __call__ | |
await route.handle(scope, receive, send) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/starlette/routing.py", line 266, in handle | |
await self.app(scope, receive, send) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/starlette/routing.py", line 65, in app | |
response = await func(request) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/fastapi/routing.py", line 227, in app | |
raw_response = await run_endpoint_function( | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/fastapi/routing.py", line 160, in run_endpoint_function | |
return await dependant.call(**values) | |
File "/home/labelray/Code/NLP_server/./main.py", line 56, in post_sentence_classification | |
return NLP_methods.sentence_classification.SentenceClassifier(train, eval).pipe() | |
File "/home/labelray/Code/NLP_server/./NLP_methods/sentence_classification.py", line 15, in __init__ | |
self.model = transformers.TFRobertaForSequenceClassification.from_pretrained('./.cache/roberta-base') | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/transformers/modeling_tf_utils.py", line 1979, in from_pretrained | |
model(model.dummy_inputs) # build the network with dummy inputs | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 67, in error_handler | |
raise e.with_traceback(filtered_tb) from None | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/transformers/modeling_tf_utils.py", line 389, in run_call_with_unpacked_inputs | |
return func(self, **unpacked_inputs) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/transformers/models/roberta/modeling_tf_roberta.py", line 1359, in call | |
outputs = self.roberta( | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/transformers/modeling_tf_utils.py", line 389, in run_call_with_unpacked_inputs | |
return func(self, **unpacked_inputs) | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/transformers/models/roberta/modeling_tf_roberta.py", line 737, in call | |
encoder_outputs = self.encoder( | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/transformers/models/roberta/modeling_tf_roberta.py", line 534, in call | |
layer_outputs = layer_module( | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/transformers/models/roberta/modeling_tf_roberta.py", line 443, in call | |
self_attention_outputs = self.attention( | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/transformers/models/roberta/modeling_tf_roberta.py", line 356, in call | |
self_outputs = self.self_attention( | |
File "/home/labelray/Code/NLP_server/venv/lib/python3.10/site-packages/transformers/models/roberta/modeling_tf_roberta.py", line 245, in call | |
mixed_query_layer = self.query(inputs=hidden_states) | |
tensorflow.python.framework.errors_impl.InternalError: Exception encountered when calling layer "query" (type Dense). | |
Failed initializing math mode [Op:MatMul] | |
Call arguments received by layer "query" (type Dense): | |
• inputs=tf.Tensor(shape=(3, 5, 768), dtype=float32) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment