Created
April 18, 2021 09:26
-
-
Save hirocarma/87ae6690e0bb1a6e9369b9e66d3d33ec to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python | |
| import sys | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import wave | |
| import scipy.signal as signal | |
| def downsampling(conversion_rate, data, fr) : | |
| decimation_sampleNum = conversion_rate-1 | |
| nyqF = (fr/conversion_rate)/2.0 | |
| cF = (fr/conversion_rate/2.0-500.)/nyqF | |
| taps = 511 | |
| b = signal.firwin(taps, cF) | |
| data = signal.lfilter(b, 1, data) | |
| down_data = [] | |
| for i in range(0, len(data), decimation_sampleNum+1): | |
| down_data.append(data[i]) | |
| return (down_data, int(fr/conversion_rate)) | |
| def smoothing(input, window): | |
| output = [] | |
| for i in range(input.shape[0]): | |
| if i < window: | |
| output.append(np.mean(input[:i+window+1])) | |
| elif i > input.shape[0] - 1 - window: | |
| output.append(np.mean(input[i:])) | |
| else: | |
| output.append(np.mean(input[i-window:i+window+1])) | |
| return np.array(output) | |
| def to_db(data, N): | |
| pad = np.zeros(N//2) | |
| pad_data = np.concatenate([pad, data, pad]) | |
| rms = np.array([np.sqrt((1/N) * (np.sum(pad_data[i:i+N]))**2) \ | |
| for i in range(len(data))]) | |
| with np.errstate(divide='ignore'): | |
| db = 20 * np.log10(rms) | |
| return db | |
| def sound_plt(wav_fname): | |
| wave_file = wave.open(wav_fname,"rb") | |
| fr = wave_file.getframerate() | |
| nframes = wave_file.getnframes() | |
| data = wave_file.readframes(nframes) | |
| data = np.frombuffer(data, dtype= "int16") | |
| down_rate = 2 | |
| down_fr = int(fr / (down_rate * 1000)) | |
| down_data, down_fr = downsampling(down_fr , data, fr) | |
| N = int(fr / 42) | |
| db = to_db(down_data, N) | |
| time = np.arange(0, db.shape[0] / down_fr, 1 / down_fr) / 60 / down_rate | |
| sm_db = smoothing(db, 1000) | |
| sm_db_x = [i for i in sm_db if i >= 20] | |
| db_mean = np.mean(sm_db_x) | |
| db_max = (np.max(sm_db_x)) | |
| db_max_time = time[np.argmax(sm_db)] | |
| sm_db_s = [i for i in sm_db if i < 20] | |
| silent_time = len(sm_db_s) / down_fr / down_rate | |
| plt.rcParams['font.family'] = 'sans-serif' | |
| plt.rcParams['font.sans-serif'] = ['IPAPGothic', 'VL PGothic'] | |
| fig = plt.figure(figsize=(16, 8), dpi=100, facecolor='tan', tight_layout=True) | |
| ax = fig.add_subplot(111, fc='w', xlabel='分(min)', ylabel='音量(dB)') | |
| ax.set_title("スーパーカブ 1話 音量推移") | |
| ax.plot(time, sm_db, label='signal') | |
| num = fr | |
| b = np.ones(num)/num | |
| sm_db2 = np.convolve(sm_db, b, mode='same') | |
| ax.plot(time, sm_db2 , 'r', label='moving average') | |
| ax.set_ylim(20, 95) | |
| boxdic = { | |
| "facecolor" : "tan", | |
| "edgecolor" : "w", | |
| "boxstyle" : "Round", | |
| "linewidth" : 1 | |
| } | |
| ax.axhline(y=db_mean , color='g',linestyle='dashed', linewidth=1) | |
| ax.text(-2, db_mean, "average:" + str(round(db_mean,1)) + "dB", size=10) | |
| ax.axvline(x=db_max_time , color='g',linestyle='dashed', linewidth=1) | |
| ax.text(db_max_time-1, db_max+1, \ | |
| "max:" + str(round(db_max,1)) + \ | |
| 'dB(' + str(round(db_max_time,1)) +'min)', \ | |
| size=10) | |
| ax.text(0.01, 0.99, \ | |
| "silent time: " + str(int(silent_time)) + 'sec' \ | |
| , verticalalignment='top', transform=ax.transAxes, bbox=boxdic) | |
| ax.grid() | |
| plt.legend() | |
| fig.savefig('ret.png', facecolor=fig.get_facecolor()) | |
| plt.show() | |
| if __name__ == '__main__': | |
| _, wav_fname = sys.argv | |
| sound_plt(wav_fname) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment