Last active
February 20, 2021 05:59
-
-
Save hirocarma/9088cf5e6ab8f1388145d76fe3e057b8 to your computer and use it in GitHub Desktop.
Detecting Kuriyama's glasses
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python | |
| import sys | |
| import os | |
| import shutil | |
| import matplotlib.pyplot as plt | |
| import cv2 | |
| import numpy as np | |
| def color_cluster(src_img, DEBUG): | |
| hsv_img = cv2.cvtColor(src_img, cv2.COLOR_BGR2HSV_FULL) | |
| h, s, v = hsv_img[:,:,0], hsv_img[:,:,1], hsv_img[:,:,2] | |
| med_h = np.median(hsv_img[:,:,0]) | |
| med_s = np.median(hsv_img[:,:,1]) | |
| med_v = np.median(hsv_img[:,:,2]) | |
| if DEBUG == 1: | |
| print ('med_hsv:', med_h, med_s, med_v) | |
| div = 180 | |
| hight, width, chan = hsv_img.shape | |
| hClp = hight / div | |
| wClp = width / div | |
| FLG = 0 | |
| for x in range(0,div): | |
| for y in range(0,div): | |
| hsv_Clp = \ | |
| hsv_img[int(y * hClp):int((y + 1) * hClp), \ | |
| int(x * wClp):int((x + 1) * wClp)] | |
| h_c, s_c, v_c = hsv_Clp[:,:,0], hsv_Clp[:,:,1], hsv_Clp[:,:,2] | |
| med_h_c = np.median(hsv_Clp[:,:,0]) | |
| med_s_c = np.median(hsv_Clp[:,:,1]) | |
| med_v_c = np.median(hsv_Clp[:,:,2]) | |
| if (med_h_c < 8 or med_h_c > 230) and \ | |
| med_s_c < 148 and med_s_c > 128: | |
| FLG = 1 ; break | |
| if FLG == 1: break | |
| if DEBUG == 1: | |
| print('med_h_c med_s_c med_v_c ', med_h_c, med_s_c, med_v_c) | |
| print('x y ', str(x * wClp) , str(y * hClp)) | |
| cv2.imshow("Clip", cv2.cvtColor(hsv_Clp, cv2.COLOR_HSV2BGR_FULL)) | |
| cv2.waitKey(0) | |
| check_img = src_img.copy() | |
| cv2.rectangle(check_img, (int(x * wClp), int(y * hClp)), \ | |
| (int(x * wClp + wClp) , int(y * hClp + hClp)), (0,0,255), 1) | |
| cv2.imshow("check", check_img) | |
| cv2.waitKey(0) | |
| if FLG == 1: | |
| hl_save, hu_save = 0, 0 | |
| hl = med_h_c - 16 ; hl = min(255, max(hl, 0)) | |
| hu = med_h_c + 6 | |
| if hu > 255: | |
| hl_save = hl - 8; hu_save = 255 | |
| hl = 0 ; hu = hu -255 + 8 | |
| hu = min(255, max(hu, 0)) | |
| sl = med_s_c - 52 ; sl = min(255, max(sl, 0)) | |
| su = med_s_c + 28 ; su = min(255, max(su, 0)) | |
| vl = med_v_c - 20 ; vl = min(255, max(vl, 0)) | |
| vu = med_v_c + 48 ; vu = min(255, max(vu, 0)) | |
| else: | |
| return src_img | |
| if DEBUG == 1: | |
| print('hl sl vl ', hl , sl, vl ) | |
| print('hu su vu ', hu , su, vu ) | |
| lower = np.array([hl,sl,vl], dtype=np.uint8) | |
| upper = np.array([hu,su,vu], dtype=np.uint8) | |
| mask = cv2.inRange(hsv_img, lower, upper) | |
| if hl_save > 0: | |
| lower = np.array([hl_save,sl,vl], dtype=np.uint8) | |
| upper = np.array([hu_save,su,vu], dtype=np.uint8) | |
| mask = cv2.inRange(hsv_img, lower, upper) | |
| img_red = cv2.bitwise_and(src_img, src_img, mask= mask) | |
| if DEBUG == 1: | |
| cv2.imshow("mask_image", img_red) | |
| cv2.waitKey(0) | |
| cv2.imwrite("mask.jpg", img_red) | |
| contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, \ | |
| cv2.CHAIN_APPROX_SIMPLE) | |
| filtered_contour = [] | |
| result_img = src_img.copy() | |
| for indx in range(len(contours)): | |
| cnt = contours[indx] | |
| if (len(cnt) > 40): | |
| if cv2.contourArea(cnt) > len(cnt): | |
| np_contour = \ | |
| np.array(cnt).reshape(len(cnt),2) | |
| left_x = min(np_contour[:,0]) | |
| right_x = max(np_contour[:,0]) | |
| top_y = min(np_contour[:,1]) | |
| bottom_y = max(np_contour[:,1]) | |
| ratio = (right_x - left_x) / (bottom_y - top_y) | |
| if ratio > 0.5 and ratio < 4: | |
| area = cv2.contourArea(cnt) | |
| rec_area = (right_x - left_x) * (bottom_y - top_y) | |
| area_ratio = area / rec_area | |
| if area_ratio > 0.08: | |
| filtered_contour.append(cnt) | |
| cv2.rectangle(result_img, (left_x,top_y), \ | |
| (right_x, bottom_y), (0,0,255), 2) | |
| if DEBUG == 1: | |
| print('ID:', indx) ; print('len:', len(cnt)) | |
| print('Area', area) ; print('ratio', ratio) | |
| print('area_ratio', area_ratio) | |
| cv2.putText(result_img, '['+ str(indx) +']', \ | |
| (left_x, top_y), \ | |
| cv2.FONT_HERSHEY_PLAIN, \ | |
| 0.8, (255, 255, 255), 1, cv2.LINE_AA) | |
| pass | |
| result_img = cv2.drawContours(result_img, filtered_contour, -1, (0,255,0), 1) | |
| if DEBUG == 1: | |
| cv2.imshow("result",result_img) | |
| cv2.waitKey(0) | |
| return result_img | |
| if __name__ == "__main__": | |
| IMG_FILE = sys.argv[1] | |
| if (len(sys.argv)) == 3: | |
| OUT_DIR = sys.argv[2] | |
| if os.path.isfile(IMG_FILE): | |
| DEBUG = 1 | |
| src_img = cv2.imread(IMG_FILE) | |
| result_img = color_cluster(src_img, DEBUG) | |
| sys.exit() | |
| if os.path.isdir(OUT_DIR): | |
| shutil.rmtree(OUT_DIR) | |
| os.makedirs(OUT_DIR) | |
| if os.path.isdir(IMG_FILE): | |
| DEBUG = 0 | |
| IMG_DIR = IMG_FILE | |
| files = os.listdir(IMG_DIR) | |
| files = sorted(files) | |
| for file in files: | |
| src_img_path = IMG_DIR + file | |
| src_img = cv2.imread(src_img_path) | |
| result_img = color_cluster(src_img, DEBUG) | |
| fname = file.split('.')[0] | |
| cv2.imwrite(OUT_DIR + 'megane-' + fname + '.jpg', result_img) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment