Last active
June 28, 2024 13:49
-
-
Save hirocarma/cc408094e9039d442dbb392b0547cdb2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python | |
| import sys | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import wave | |
| import scipy.signal as signal | |
| import math | |
| LIMIT_DB = 20 | |
| MAX_DB = 70 | |
| DOWN_RATE = 2 | |
| SMOOTHING_WINDOW = 1000 | |
| UNIT_OF_TIME = "sec" # sec or min | |
| def downsampling(conversion_rate, data, fr): | |
| decimation_sample_num = conversion_rate - 1 | |
| nyqF = (fr / conversion_rate) / 2.0 | |
| cF = (fr / conversion_rate / 2.0 - 500.) / nyqF | |
| taps = 511 | |
| b = signal.firwin(taps, cF) | |
| data = signal.lfilter(b, 1, data) | |
| down_data = data[::decimation_sample_num + 1] | |
| return down_data, int(fr / conversion_rate) | |
| def smoothing(input_data, window_size): | |
| output = np.zeros_like(input_data) | |
| for i in range(len(input_data)): | |
| start = max(0, i - window_size) | |
| end = min(len(input_data), i + window_size + 1) | |
| output[i] = np.mean(input_data[start:end]) | |
| return output | |
| def calculate_rms(data, N): | |
| pad = np.zeros(N // 2) | |
| pad_data = np.concatenate([pad, data, pad]) | |
| rms = np.array([np.sqrt((1 / N) * (np.sum(pad_data[i:i + N])) ** 2) | |
| for i in range(len(data))]) | |
| with np.errstate(divide='ignore'): | |
| db = 20 * np.log10(rms) | |
| return db | |
| def moving_average_convolve(data, size): | |
| b = np.ones(size) / size | |
| data_mean = np.convolve(data, b, mode="same") | |
| n_conv = math.ceil(size / 2) | |
| data_mean[0] *= size / n_conv | |
| for i in range(1, n_conv): | |
| data_mean[i] *= size / (i + n_conv) | |
| data_mean[-i] *= size / (i + n_conv - (size % 2)) | |
| return data_mean | |
| def wave_to_db(wav_fname): | |
| wave_file = wave.open(wav_fname, "rb") | |
| fr = wave_file.getframerate() | |
| nframes = wave_file.getnframes() | |
| data = np.frombuffer(wave_file.readframes(nframes), dtype="int16") | |
| wave_file.close() | |
| down_fr = int(fr / (DOWN_RATE * 1000)) | |
| down_data, down_fr = downsampling(down_fr, data, fr) | |
| N = int(fr / 42) | |
| db = calculate_rms(down_data, N) | |
| time = np.arange(0, db.shape[0] / down_fr, 1 / down_fr) / DOWN_RATE | |
| sm_db = smoothing(db, SMOOTHING_WINDOW) | |
| return sm_db, time, fr | |
| def db_stats(db, time): | |
| db_t = [i for i in db if i >= LIMIT_DB] | |
| db_mean = np.mean(db_t) | |
| db_max = np.max(db_t) | |
| db_max_time = time[np.argmax(db)] | |
| return db_mean, db_max, db_max_time | |
| def moving_average(db, time, fr): | |
| max_iterations = 5 | |
| for _ in range(max_iterations): | |
| db = moving_average_convolve(db, fr) | |
| time = np.linspace(np.min(time), np.max(time), np.size(db)) | |
| return db, time | |
| def plot_waveforms(wav_fname1, wav_fname2, title): | |
| sm_db1, time1, fr1 = wave_to_db(wav_fname1) | |
| db_mean1, db_max1, db_max_time1 = db_stats(sm_db1, time1) | |
| sm_db_a1, time_a1 = moving_average(sm_db1, time1, fr1) | |
| sm_db2, time2, fr2 = wave_to_db(wav_fname2) | |
| db_mean2, db_max2, db_max_time2 = db_stats(sm_db2, time2) | |
| sm_db_a2, time_a2 = moving_average(sm_db2, time2, fr2) | |
| if UNIT_OF_TIME == 'min': | |
| time1 = time1 / 60; db_max_time1 = db_max_time1 / 60 | |
| time_a1 = time_a1 / 60 | |
| time2 = time2 / 60; db_max_time2 = db_max_time2 / 60 | |
| time_a2 = time_a2 / 60 | |
| plt.rcParams['font.family'] = 'sans-serif' | |
| plt.rcParams['font.sans-serif'] = ['IPAPGothic', 'VL PGothic'] | |
| fig = plt.figure(figsize=(16, 8), dpi=100, facecolor='tan', tight_layout=True) | |
| ax = fig.add_subplot(111, fc='w', xlabel=UNIT_OF_TIME, ylabel='音量(dB)') | |
| ax.set_title(title + " 音量推移") | |
| ax.set_ylim(LIMIT_DB, MAX_DB) | |
| ax.grid() | |
| ax.plot(time1, sm_db1, 'c', label='No.1 signal') | |
| ax.plot(time_a1, sm_db_a1, 'b', label='No.1 moving average') | |
| ax.axhline(y=db_mean1, color='b', linestyle='dashed', linewidth=1) | |
| ax.text(-6, db_mean1 - 2, "No.1 average:" + str(round(db_mean1, 1)) + \ | |
| "dB", size=10) | |
| ax.axvline(x=db_max_time1, color='b', linestyle='dashed', linewidth=1) | |
| ax.text(db_max_time1, db_max1 + 2, "No.1 max:" + str(round(db_max1, 1)) + \ | |
| 'dB(' + str(round(db_max_time1, 1)) + UNIT_OF_TIME + ')', size=10) | |
| ax.plot(time2, sm_db2, 'm', label='No.2 Signal') | |
| ax.plot(time_a2, sm_db_a2, 'r', label='No.2 moving average') | |
| ax.axhline(y=db_mean2, color='r', linestyle='dashed', linewidth=1) | |
| ax.text(-6, db_mean2 + 1, "No.2 average:" + str(round(db_mean2, 1)) + \ | |
| "dB", size=10) | |
| ax.axvline(x=db_max_time2, color='r', linestyle='dashed', linewidth=1) | |
| ax.text(db_max_time2, db_max2 + 1, "No.2 max:" + str(round(db_max2, 1)) + \ | |
| 'dB(' + str(round(db_max_time2, 1)) + UNIT_OF_TIME + ')', size=10) | |
| plt.legend(bbox_to_anchor=(1, 1), loc='upper right', borderaxespad=0) | |
| fig.savefig(title + '-ret.png', facecolor=fig.get_facecolor()) | |
| plt.show() | |
| def main(argv): | |
| if len(argv) != 4: | |
| print("Usage: python script.py <wave_file1> <wave_file2> <title>") | |
| return | |
| wav_fname1 = argv[1] | |
| wav_fname2 = argv[2] | |
| title = argv[3] | |
| plot_waveforms(wav_fname1, wav_fname2, title) | |
| if __name__ == '__main__': | |
| main(sys.argv) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment