Created
August 13, 2023 10:10
-
-
Save hirocarma/e60d4ff72d82299b09153b038f16924e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python | |
| import os | |
| import sys | |
| import cv2 | |
| import numpy as np | |
| import colorsys | |
| import matplotlib.pyplot as plt | |
| import math | |
| from scipy import stats | |
| def Lab_plt(IMG_DIR, IMG_DIR2, p_title): | |
| files = os.listdir(IMG_DIR) | |
| files = sorted(files) | |
| fps = 24 | |
| Ll=[];Lc=[] | |
| for i, file in enumerate(files): | |
| if not i % (fps / 8) == 0: | |
| continue | |
| img_path = IMG_DIR + '/' + file | |
| img = cv2.imread(img_path) | |
| lab_img = cv2.cvtColor(img, cv2.COLOR_BGR2Lab) | |
| mean_l = int(np.mean(lab_img[:,:,0])) | |
| mean_a = int(np.mean(lab_img[:,:,1])) | |
| mean_b = int(np.mean(lab_img[:,:,2])) | |
| mean_c = math.sqrt(mean_a**2+mean_b**2) | |
| Ll.append(mean_l) | |
| Lc.append(mean_c) | |
| l_mean = np.mean(Ll) | |
| c_mean = np.mean(Lc) | |
| files = os.listdir(IMG_DIR2) | |
| files = sorted(files) | |
| fps = 24 | |
| Ll2=[];Lc2=[] | |
| for i, file in enumerate(files): | |
| if not i % (fps / 8) == 0: | |
| continue | |
| img_path = IMG_DIR2 + '/' + file | |
| img = cv2.imread(img_path) | |
| lab_img = cv2.cvtColor(img, cv2.COLOR_BGR2Lab) | |
| mean_l = int(np.mean(lab_img[:,:,0])) | |
| mean_a = int(np.mean(lab_img[:,:,1])) | |
| mean_b = int(np.mean(lab_img[:,:,2])) | |
| mean_c = math.sqrt(mean_a**2+mean_b**2) | |
| Ll2.append(mean_l) | |
| Lc2.append(mean_c) | |
| l_mean2 = np.mean(Ll2) | |
| c_mean2 = np.mean(Lc2) | |
| p_fname =p_title | |
| plt.rcParams['font.family'] = 'sans-serif' | |
| plt.rcParams['font.sans-serif'] = ['IPAPGothic', 'VL PGothic'] | |
| fig = plt.figure(figsize=(16, 8), dpi=100, facecolor='lightgray', tight_layout=True) | |
| ax4 = fig.add_subplot(111, fc='w', xlabel='c*(彩度)', ylabel='L*(明度)') | |
| ax4.set_title(p_title +" L*a*b* トーン:明度x彩度 比較") | |
| ax4.scatter(Lc,Ll,c="blue",s=1,label="TV1期") | |
| ax4.axhline(y=l_mean , color='aqua',linestyle='dashed', linewidth=1) | |
| ax4.text(145, l_mean, "mean:" + str(round(l_mean,1)), ha='right', size=10) | |
| ax4.axvline(x=c_mean , color='aqua',linestyle='dashed', linewidth=1) | |
| ax4.text(c_mean, -4, "mean:" + str(round(c_mean,1)), ha='right', size=10) | |
| ax4.scatter(Lc2,Ll2,c="red",s=1,label="アンコン編") | |
| ax4.axhline(y=l_mean2 , color='magenta',linestyle='dashed', linewidth=1) | |
| ax4.text(145, l_mean2, "mean:" + str(round(l_mean2,1)), ha='right', size=10) | |
| ax4.axvline(x=c_mean2 , color='magenta',linestyle='dashed', linewidth=1) | |
| ax4.text(c_mean2, -4, "mean:" + str(round(c_mean2,1)), ha='right', size=10) | |
| ax4.set_xlim([140, 240]) | |
| ax4.set_ylim([-10, 255]) | |
| ax4.grid() | |
| plt.legend(loc="upper left") | |
| fig.savefig(p_fname +'-lab-tone-comp.png', facecolor=fig.get_facecolor()) | |
| plt.show() | |
| if __name__ == '__main__': | |
| IMG_DIR = sys.argv[1] | |
| IMG_DIR2 = sys.argv[2] | |
| p_title = sys.argv[3] | |
| Lab_plt(IMG_DIR, IMG_DIR2, p_title) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment