Created
March 10, 2017 02:46
-
-
Save hirokai/15a94f4420c72af505117277bf45d39c to your computer and use it in GitHub Desktop.
Stability of FDH-BOD on hydrogel data on 2016/3/9
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import csv | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import math | |
import os | |
import operator | |
# | |
# File manipulation | |
# | |
def ambiguous_path(path_head): | |
import glob | |
files = glob.glob(path_head) | |
assert len(files) == 1, 'Only one file must be found (%d files found).' % len(files) | |
return files[0] | |
colors10 = """#1f77b4 | |
#ff7f0e | |
#2ca02c | |
#d62728 | |
#9467bd | |
#8c564b | |
#e377c2 | |
#7f7f7f | |
#bcbd22 | |
#17becf""".split('\n') | |
os.chdir(os.path.dirname(__file__)) | |
def calc_time_cycle(ts, ys, count=620): | |
# count = 0 | |
# last_t = 0 | |
# # print(ys.shape[0]) | |
# for i in range(ys.shape[0]): | |
# if i >= 2 and ys[i] - ys[i - 2] > 400: | |
# # print(ts[i]-last_t) | |
# last_t = ts[i] | |
# if count == 0: | |
# t0 = ts[i] | |
# count += 1 | |
# t1 = last_t | |
# # return (t1 - t0) / count | |
return (4.966633E+4 - 2.900019E+1) / count | |
def scanl(f, base, l): | |
for x in l: | |
base = f(base, x) | |
yield base | |
def prepare_cycles(num_samples, time_start, time_cycle, num_cycles): | |
time_interval = [time_cycle - ((num_samples - 1) * 10) if i == 0 else 10 for i in range(num_samples)] | |
time_interval_accum = [0] + list(scanl(operator.add, 0, time_interval))[0:-1] | |
print(time_interval_accum) | |
# [[]] * num won't work. If you do so, elements would be just references to the same list. | |
_rs = [[] for _ in range(num_samples)] | |
_ts2 = [[] for _ in range(num_samples)] | |
time_points = np.tile(time_interval_accum, num_cycles) | |
for i in range(num_cycles): | |
i0 = i * num_samples | |
i1 = i0 + len(time_interval) | |
time_points[i0:i1] += (time_start + i * time_cycle) | |
return time_interval, _rs, _ts2, time_points | |
def read_data(): | |
with open(ambiguous_path("../02 *.DY20")) as f: | |
reader = csv.reader(f, delimiter='\t') | |
for _ in range(21): | |
reader.next() | |
vs = [] | |
for row in reader: | |
if len(row) < 2: | |
break | |
vs.append(map(float, row)) | |
vs = np.array(vs) | |
ts = vs[:, 0] | |
ys = vs[:, 1] * 1000 | |
return ts, ys | |
def split_data(ts, ys, num_cycles, time_start): | |
num_samples = 7 | |
time_cycle = calc_time_cycle(ts, ys, num_cycles) | |
time_interval, rs, ts2, time_points = prepare_cycles(num_samples, time_start, time_cycle, num_cycles * 2) | |
assert len(time_interval) == num_samples | |
assert np.abs(np.sum(time_interval) - time_cycle) <= 0.01 | |
c = 0 | |
for i in range(len(ts)): | |
timepoint = time_points[c] | |
if ts[i] >= timepoint: | |
ts2[c % num_samples].append(ts[i]) | |
rs[c % num_samples].append(ys[i]) | |
c += 1 | |
l = min([len(r) for r in rs]) | |
rs = np.array([r[0:l] for r in rs]) | |
ts = np.array([t[0:l] for t in ts2]) | |
time_offset_min = np.array([-45, -30, -23, 9, 22, 37, 50]) | |
offset_matrix = np.tile(time_offset_min * 60, (ts.shape[1], 1)).transpose() | |
ts -= offset_matrix | |
np.savetxt('time.tsv', ts.transpose(), delimiter='\t', fmt='%.2f') | |
np.savetxt('voltage.tsv', rs.transpose(), delimiter='\t', fmt='%.2f') | |
return ts, rs | |
def do_job(num_cycles, time_start, show=False): | |
ts_raw, ys_raw = read_data() | |
ts, ys = split_data(ts_raw, ys_raw, num_cycles, time_start) | |
# print('Voltage max [mV]: ') | |
vmax = np.amax(ys, axis=1) | |
# print(vmax) | |
# print('Voltage after 12 h [mV]: ') | |
v12h = ys[:, -1] | |
# print(v12h) | |
print('Voltage max and after 12 h [mV]') | |
print(np.array([vmax, v12h]).transpose()) | |
plt.subplot(3,1,1) | |
for i, v in enumerate(zip(ts, ys)): | |
t, r = v | |
# if i in [0,6]: | |
t_in_min = np.array(t) / 60 | |
plt.plot(t_in_min, r, color=colors10[i % 10], lw=1, label=str(i + 1)) | |
# http://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot | |
# ax = plt.axes() | |
# box = ax.get_position() | |
# ax.set_position([box.x0, box.y0, box.width * 0.9, box.height]) | |
plt.legend(loc='center left', ncol=1, bbox_to_anchor=(1, 0.5)) | |
plt.xlabel('Time [min]') | |
plt.ylabel('Voltage [mV]') | |
plt.xlim([0, 60 * 12]) | |
plt.ylim([0, 800]) | |
# plt.savefig('20170309 voltage over 12 h.pdf') | |
plt.title('Voltage vs time') | |
plt.subplot(3,1,2) | |
resistance_list = [100, 100, 100, 1, 1, 1, 10] | |
for i, v in enumerate(zip(ts, ys)): | |
t, voltage = v | |
resistance = resistance_list[i] | |
current = voltage / resistance / (0.05 * 1) | |
# if i in [0,6]: | |
t_in_min = np.array(t) / 60 | |
plt.plot(t_in_min, current, color=colors10[i % 10], lw=1, label=str(i + 1)) | |
# http://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot | |
# ax = plt.axes() | |
# box = ax.get_position() | |
# ax.set_position([box.x0, box.y0, box.width * 0.9, box.height]) | |
plt.legend(loc='center left', ncol=1, bbox_to_anchor=(1, 0.5)) | |
plt.xlabel('Time [min]') | |
plt.ylabel('Current density [uA/cm^2]') | |
plt.xlim([0, 60 * 12]) | |
plt.ylim([0, 5000]) | |
# plt.savefig('20170309 voltage over 12 h.pdf') | |
plt.title('Current vs time') | |
plt.subplot(3,1,3) | |
resistance_list = [100, 100, 100, 1, 1, 1, 10] | |
for i, v in enumerate(zip(ts, ys)): | |
t, voltage = v | |
resistance = resistance_list[i] | |
current = voltage / resistance / (0.05 * 1) | |
# if i in [0,6]: | |
t_in_min = np.array(t) / 60 | |
plt.plot(t_in_min, current, color=colors10[i % 10], lw=1, label=str(i + 1)) | |
# http://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot | |
# ax = plt.axes() | |
# box = ax.get_position() | |
# ax.set_position([box.x0, box.y0, box.width * 0.9, box.height]) | |
plt.legend(loc='center left', ncol=1, bbox_to_anchor=(1, 0.5)) | |
plt.xlabel('Time [min]') | |
plt.ylabel('Current density [uA/cm^2]') | |
plt.xlim([0, 60]) | |
plt.ylim([0, 5000]) | |
# plt.savefig('20170309 voltage over 12 h.pdf') | |
plt.title('Current vs time') | |
if show: | |
plt.show() | |
do_job(num_cycles=620, time_start=2.900019E+1 + 5, show=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment