Last active
December 14, 2015 15:29
-
-
Save hirokiky/5108354 to your computer and use it in GitHub Desktop.
Aggregating with SQLAlchemy's SQLExpression. Getting total of price, number of sales, piechart, linechart and ranking.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
from sqlalchemy import ( | |
create_engine, | |
Table, | |
Column, | |
Integer, | |
String, | |
MetaData, | |
ForeignKey, | |
DateTime, | |
func, | |
select, | |
) | |
engine = create_engine('sqlite:///:memory:', echo=True) | |
conn = engine.connect() | |
metadata = MetaData() | |
categories = Table('categories', metadata, | |
Column('id', Integer, primary_key=True), | |
Column('name', String), | |
) | |
items = Table('items', metadata, | |
Column('id', Integer, primary_key=True), | |
Column('name', String), | |
Column('price', Integer), | |
Column('category_id', None, ForeignKey('categories.id')), | |
) | |
histories = Table('histories', metadata, | |
Column('id', Integer, primary_key=True), | |
Column('item_id', None, ForeignKey('items.id')), | |
Column('sold_datetime', DateTime) | |
) | |
metadata.create_all(engine) | |
conn.execute(categories.insert(), [ | |
{'id': '1', 'name': u'ボディ'}, | |
{'id': '2', 'name': u'ウィッグ'}, | |
{'id': '3', 'name': u'アイ'}, | |
]) | |
conn.execute(items.insert(), [ | |
{'id': 1, 'name': u'DD', 'price': 20000, 'category_id': 1}, | |
{'id': 2, 'name': u'DD-2', 'price': 23000, 'category_id': 1}, | |
{'id': 3, 'name': u'ショートヘア', 'price': 1000, 'category_id': 2}, | |
{'id': 4, 'name': u'ロングヘア', 'price': 2000, 'category_id': 2}, | |
{'id': 5, 'name': u'グラスアイ', 'price': 5000, 'category_id': 3}, | |
{'id': 6, 'name': u'アクリルアイ', 'price': 1000, 'category_id': 3}, | |
]) | |
import datetime | |
conn.execute(histories.insert(), [ | |
{'item_id': 1, 'sold_datetime': datetime.datetime(2012, 1, 1, 0, 0, 0)}, | |
{'item_id': 1, 'sold_datetime': datetime.datetime(2012, 1, 10, 12, 0, 0)}, | |
{'item_id': 1, 'sold_datetime': datetime.datetime(2012, 2, 21, 21, 0, 0)}, | |
{'item_id': 2, 'sold_datetime': datetime.datetime(2012, 1, 4, 8, 0, 0)}, | |
{'item_id': 2, 'sold_datetime': datetime.datetime(2012, 2, 1, 1, 0, 0)}, | |
{'item_id': 3, 'sold_datetime': datetime.datetime(2012, 1, 23, 1, 0, 0)}, | |
{'item_id': 3, 'sold_datetime': datetime.datetime(2012, 2, 14, 22, 0, 0)}, | |
{'item_id': 4, 'sold_datetime': datetime.datetime(2012, 2, 11, 4, 0, 0)}, | |
{'item_id': 5, 'sold_datetime': datetime.datetime(2012, 1, 11, 9, 0, 0)}, | |
{'item_id': 5, 'sold_datetime': datetime.datetime(2012, 1, 21, 2, 0, 0)}, | |
{'item_id': 6, 'sold_datetime': datetime.datetime(2012, 1, 18, 11, 0, 0)}, | |
{'item_id': 6, 'sold_datetime': datetime.datetime(2012, 2, 13, 23, 0, 0)}, | |
]) | |
jan = (datetime.datetime(2012, 1, 1), datetime.datetime(2012, 2, 1)) | |
for s in ( | |
select([func.count()], | |
histories.c.sold_datetime.between(*jan)), | |
select([func.sum(items.c.price)], | |
histories.c.sold_datetime.between(*jan) & \ | |
(items.c.id == histories.c.item_id)), | |
select([categories.c.name, func.sum(items.c.price)], | |
histories.c.sold_datetime.between(*jan) & \ | |
(items.c.category_id == categories.c.id) & \ | |
(items.c.id == histories.c.item_id)).\ | |
group_by(categories.c.id), | |
select([items.c.name, func.sum(items.c.price).label('total_price')], | |
histories.c.sold_datetime.between(*jan) & \ | |
(items.c.id == histories.c.item_id)).\ | |
group_by(items.c.id).\ | |
order_by('total_price'), | |
select([func.date(histories.c.sold_datetime).label('sold_date'), | |
func.sum(items.c.price)]).\ | |
group_by('sold_date'), | |
select([func.strftime('%Y-%m', histories.c.sold_datetime).label('sold_date'), | |
func.sum(items.c.price)]).\ | |
group_by('sold_date') | |
): | |
print conn.execute(s).fetchall() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment