Last active
February 2, 2016 14:51
-
-
Save hiropppe/057e6a40b55d1301687e to your computer and use it in GitHub Desktop.
Naive Bayes Classifier Implementation Sample
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
from abc import ABCMeta, abstractmethod | |
import math | |
import sys | |
from collections import defaultdict | |
class NB: | |
@abstractmethod | |
def fit(self, x, y): | |
""" | |
""" | |
@abstractmethod | |
def predict(self, d): | |
""" | |
""" | |
class MultinomialNB(NB): | |
def __init__(self): | |
self.wset = set() | |
self.wfreq_c = defaultdict(lambda: defaultdict(int)) | |
self.dfreq_c = defaultdict(int) | |
def fit(self, x, y): | |
for i in range(len(x)): | |
for w in x[i]: | |
self.wset.add(w) | |
self.wfreq_c[y[i]][w] += 1 | |
self.dfreq_c[y[i]] += 1 | |
def predict(self, d): | |
cscore = defaultdict(float) | |
for c in self.dfreq_c.keys(): | |
cscore[c] = self._log_likelihood(d, c) | |
print cscore | |
return sorted(cscore.items(), key=lambda x: x[1], reverse=True)[0][0] | |
def freq_stats(self): | |
print 'wset : {}'.format(self.wset) | |
print 'dn(c):' | |
for c in self.dfreq_c.keys(): | |
print ' dn(c={}) => {}'.format(c, self.dfreq_c[c]) | |
print 'wn(c, w):' | |
for c in self.wfreq_c.keys(): | |
for w in self.wfreq_c[c].keys(): | |
print ' wn(c={}, w={}) => {}'.format(c, w, self.wfreq_c[c][w]) | |
def _log_likelihood(self, d, c): | |
score = math.log(self._p_c(c)) | |
for w in self.wset: | |
score += math.log(self._score(w, d, c)) | |
return score | |
def _score(self, w, d, c): | |
return math.pow(self._q_wc(w, c), self._delta(w, d)) | |
def _delta(self, w, d): | |
if w in d: | |
return 1 | |
else: | |
return 0 | |
def _q_wc(self, w, c): | |
return (self.wfreq_c[c][w] + 1.0) / (sum(v[1] for v in self.wfreq_c[c].items()) + len(self.wset)) | |
def _p_c(self, c): | |
return self.dfreq_c[c] + 1.0 / ( sum(n for n in self.dfreq_c.values()) + len(self.dfreq_c)) | |
class BernoulliNB(NB): | |
def __init__(self): | |
self.wset = set() | |
self.dfreq_c = defaultdict(int) | |
self.dfreq_wc = defaultdict(lambda: defaultdict(int)) | |
def fit(self, x, y): | |
for i in range(len(x)): | |
for w in set(x[i]): | |
self.wset.add(w) | |
self.dfreq_wc[w][y[i]] += 1 | |
self.dfreq_c[y[i]] += 1 | |
def predict(self, d): | |
cscore = defaultdict(float) | |
for c in self.dfreq_c.keys(): | |
cscore[c] = self._log_likelihood(d, c) | |
print cscore | |
return sorted(cscore.items(), key=lambda x: x[1], reverse=True)[0][0] | |
def freq_stats(self): | |
print 'wset : {}'.format(self.wset) | |
print 'dn(c):' | |
for c in self.dfreq_c.keys(): | |
print ' dn(c={}) => {}'.format(c, self.dfreq_c[c]) | |
print 'dn(w, c):' | |
for w in self.dfreq_wc.keys(): | |
for c in self.dfreq_wc[w].keys(): | |
print ' dn(w={}, c={}) => {}'.format(w, c, self.dfreq_wc[w][c]) | |
def _log_likelihood(self, d, c): | |
score = math.log(self._p_c(c)) | |
for w in self.wset: | |
score += math.log(self._score(w, d, c)) | |
return score | |
def _score(self, w, d, c): | |
p_wc = self._p_wc(w, c) | |
delta = self._delta(w, d) | |
return math.pow(p_wc, delta) * math.pow((1.0 - p_wc), (1.0 - delta)) | |
def _delta(self, w, d): | |
if w in d: | |
return 1 | |
else: | |
return 0 | |
def _p_wc(self, w, c): | |
return (self.dfreq_wc[w][c] + 1.0) / (self.dfreq_c[c] + 2.0) | |
def _p_c(self, c): | |
return self.dfreq_c[c] + 1.0 / ( sum(n for n in self.dfreq_c.values()) + len(self.dfreq_wc)) | |
if __name__ == '__main__': | |
x = [['good', 'bad', 'good', 'good'], | |
['exciting', 'exciting'], | |
['good', 'good', 'exciting', 'boring'], | |
['bad', 'boring', 'boring', 'boring'], | |
['bad', 'good', 'bad'], | |
['bad', 'bad', 'boring', 'exciting']] | |
y = ['P', 'P', 'P', 'N', 'N', 'N'] | |
nb = BernoulliNB() | |
nb.fit(x, y) | |
nb.freq_stats() | |
c = nb.predict(['bad', 'bad', 'boring', 'boring', 'fine']) | |
print 'BernoulliNB => {}'.format(c) | |
nb = MultinomialNB() | |
nb.fit(x, y) | |
nb.freq_stats() | |
c = nb.predict(['bad', 'bad', 'boring', 'boring', 'fine']) | |
print 'MultinomialNB => {}'.format(c) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment