Last active
December 16, 2015 03:52
-
-
Save hiropppe/6b39869b0d9fca11f1be to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
from abc import ABCMeta, abstractmethod | |
import math | |
import sys | |
from collections import defaultdict | |
class NB: | |
@abstractmethod | |
def fit(self, x, y): | |
""" | |
""" | |
@abstractmethod | |
def predict(self, d): | |
""" | |
""" | |
class MultinomialNB(NB): | |
def __init__(self): | |
self.wset = set() | |
self.wfreq_c = defaultdict(lambda: defaultdict(int)) | |
self.dfreq_c = defaultdict(int) | |
def fit(self, x, y): | |
for i in range(len(x)): | |
for w in x[i]: | |
self.wset.add(w) | |
self.wfreq_c[y[i]][w] += 1 | |
self.dfreq_c[y[i]] += 1 | |
def predict(self, d): | |
cscore = defaultdict(float) | |
for c in self.dfreq_c.keys(): | |
cscore[c] = self._log_likelihood(d, c) | |
print cscore | |
return sorted(cscore.items(), key=lambda x: x[1], reverse=True)[0][0] | |
def freq_stats(self): | |
print 'wset : {}'.format(self.wset) | |
print 'dn(c):' | |
for c in self.dfreq_c.keys(): | |
print ' dn(c={}) => {}'.format(c, self.dfreq_c[c]) | |
print 'wn(c, w):' | |
for c in self.wfreq_c.keys(): | |
for w in self.wfreq_c[c].keys(): | |
print ' wn(c={}, w={}) => {}'.format(c, w, self.wfreq_c[c][w]) | |
def _log_likelihood(self, d, c): | |
score = math.log(self._p_c(c)) | |
for w in self.wset: | |
score += math.log(self._score(w, d, c)) | |
return score | |
def _score(self, w, d, c): | |
return math.pow(self._q_wc(w, c), self._delta(w, d)) | |
def _delta(self, w, d): | |
if w in d: | |
return 1 | |
else: | |
return 0 | |
def _q_wc(self, w, c): | |
return (self.wfreq_c[c][w] + 1.0) / (sum(v[1] for v in self.wfreq_c[c].items()) + len(self.wset)) | |
def _p_c(self, c): | |
return self.dfreq_c[c] + 1.0 / ( sum(n for n in self.dfreq_c.values()) + len(self.dfreq_c)) | |
class BernoulliNB(NB): | |
def __init__(self): | |
self.wset = set() | |
self.dfreq_c = defaultdict(int) | |
self.dfreq_wc = defaultdict(lambda: defaultdict(int)) | |
def fit(self, x, y): | |
for i in range(len(x)): | |
for w in set(x[i]): | |
self.wset.add(w) | |
self.dfreq_wc[w][y[i]] += 1 | |
self.dfreq_c[y[i]] += 1 | |
def predict(self, d): | |
cscore = defaultdict(float) | |
for c in self.dfreq_c.keys(): | |
cscore[c] = self._log_likelihood(d, c) | |
print cscore | |
return sorted(cscore.items(), key=lambda x: x[1], reverse=True)[0][0] | |
def freq_stats(self): | |
print 'wset : {}'.format(self.wset) | |
print 'dn(c):' | |
for c in self.dfreq_c.keys(): | |
print ' dn(c={}) => {}'.format(c, self.dfreq_c[c]) | |
print 'dn(w, c):' | |
for w in self.dfreq_wc.keys(): | |
for c in self.dfreq_wc[w].keys(): | |
print ' dn(w={}, c={}) => {}'.format(w, c, self.dfreq_wc[w][c]) | |
def _log_likelihood(self, d, c): | |
score = math.log(self._p_c(c)) | |
for w in self.wset: | |
score += math.log(self._score(w, d, c)) | |
return score | |
def _score(self, w, d, c): | |
p_wc = self._p_wc(w, c) | |
delta = self._delta(w, d) | |
return math.pow(p_wc, delta) * math.pow((1.0 - p_wc), (1.0 - delta)) | |
def _delta(self, w, d): | |
if w in d: | |
return 1 | |
else: | |
return 0 | |
def _p_wc(self, w, c): | |
return (self.dfreq_wc[w][c] + 1.0) / (self.dfreq_c[c] + 2.0) | |
def _p_c(self, c): | |
return self.dfreq_c[c] + 1.0 / ( sum(n for n in self.dfreq_c.values()) + len(self.dfreq_wc)) | |
def main(): | |
x = [['good', 'bad', 'good', 'good'], | |
['exciting', 'exciting'], | |
['good', 'good', 'exciting', 'boring'], | |
['bad', 'boring', 'boring', 'boring'], | |
['bad', 'good', 'bad'], | |
['bad', 'bad', 'boring', 'exciting']] | |
y = ['P', 'P', 'P', 'N', 'N', 'N'] | |
nb = BernoulliNB() | |
nb.fit(x, y) | |
nb.freq_stats() | |
c = nb.predict(['bad', 'bad', 'boring', 'boring', 'fine']) | |
print 'BernoulliNB => {}'.format(c) | |
nb = MultinomialNB() | |
nb.fit(x, y) | |
nb.freq_stats() | |
c = nb.predict(['bad', 'bad', 'boring', 'boring', 'fine']) | |
print 'MultinomialNB => {}'.format(c) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment