Last active
November 30, 2015 08:38
-
-
Save hiropppe/9252028265d3838b920b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## all | |
find ../KNBC_v1.0_090925/corpus1 -type f -name "KN*" | LC_ALL=C sort | xargs cat | python ../tools/knbc2kyoto.py KNP | python ../tools/replace_pos.py mecab -d /usr/local/lib/mecab/dic/jumandic > corpus.euc | |
iconv -f EUC-JP -t UTF-8 corpus.euc > corpus | |
mkdir -p model/knbc && rm -rf model/knbc/* | |
jdepp -t 0 -I 1 -c corpus -m model/knbc -- -t 1 -d 2 -c 0.0008 -i 40 -p | |
jdepp -t 3 -I 1 -c corpus -m model/knbc -- -t 1 -d 2 -c 0.0008 -i 40 -p -- -s 0.02 -i 5 -t 1 | |
jdepp -t 0 -I 2 -c corpus -m model/knbc -- -t 1 -d 2 -c 0.00005 -i 40 -p | |
jdepp -t 3 -I 2 -c corpus -m model/knbc -- -t 1 -d 2 -c 0.00005 -i 40 -p -- -- -s 0.005 -i 5 -t 1 | |
cat corpus | python ../tools/to_sent.py | mecab -d /usr/local/lib/mecab/dic/jumandic > tagged | |
time cat tagged | jdepp -m model/knbc > result | |
time cat tagged | jdepp -m model/knbc > result | |
time cat tagged | jdepp -m model/knbc > result | |
python ../tools/eval.py result corpus | |
## cv | |
# corpus | |
find ../KNBC_v1.0_090925/corpus1 -type f -name "KN*Keitai*" | LC_ALL=C sort | xargs cat | python ../tools/knbc2kyoto.py KNP | python ../tools/replace_pos.py mecab -d /usr/local/lib/mecab/dic/jumandic > knbc1.euc | |
find ../KNBC_v1.0_090925/corpus1 -type f -name "KN*Kyoto*" | LC_ALL=C sort | xargs cat | python ../tools/knbc2kyoto.py KNP | python ../tools/replace_pos.py mecab -d /usr/local/lib/mecab/dic/jumandic > knbc2.euc | |
find ../KNBC_v1.0_090925/corpus1 -type f -name "KN*Gourmet*" | LC_ALL=C sort | xargs cat | python ../tools/knbc2kyoto.py KNP | python ../tools/replace_pos.py mecab -d /usr/local/lib/mecab/dic/jumandic > knbc3.euc | |
find ../KNBC_v1.0_090925/corpus1 -type f -name "KN*Sports*" | LC_ALL=C sort | xargs cat | python ../tools/knbc2kyoto.py KNP | python ../tools/replace_pos.py mecab -d /usr/local/lib/mecab/dic/jumandic > knbc4.euc | |
for i in `seq 1 1 4`; | |
do | |
iconv -f EUC-JP -t UTF-8 knbc$i.euc > knbc$i.utf8; | |
done | |
cat knbc2.utf8 knbc3.utf8 knbc4.utf8> corpus1 | |
cat knbc1.utf8 > gold1 | |
cat knbc3.utf8 knbc4.utf8 knbc1.utf8> corpus2 | |
cat knbc2.utf8 > gold2 | |
cat knbc4.utf8 knbc1.utf8 knbc2.utf8> corpus3 | |
cat knbc3.utf8 > gold3 | |
cat knbc1.utf8 knbc2.utf8 knbc3.utf8> corpus4 | |
cat knbc4.utf8 > gold4 | |
# learning chunk and dep, then test | |
for i in `seq 1 1 4`; | |
do | |
# jdepp -t 0 -I 1 -c corpus$i -m model -- -t 1 -d 2 -c 0.00005 -i 40 -p | |
mkdir -p model/knbc$i && rm -rf model/knbc$i/* | |
jdepp -t 0 -I 1 -c corpus$i -m model/knbc$i -- -t 1 -d 2 -c 0.0008 -i 40 -p | |
jdepp -t 3 -I 1 -c corpus$i -m model/knbc$i -- -t 1 -d 2 -c 0.0008 -i 40 -p -- -s 0.02 -i 5 -t 1; | |
jdepp -t 0 -I 2 -c corpus$i -m model/knbc$i -- -t 1 -d 2 -c 0.00005 -i 40 -p | |
jdepp -t 3 -I 2 -c corpus$i -m model/knbc$i -- -t 1 -d 2 -c 0.00005 -i 40 -p -- -- -s 0.005 -i 5 -t 1; | |
cat gold$i | python ../tools/to_sent.py | mecab -d /usr/local/lib/mecab/dic/jumandic | jdepp -m model/knbc$i > result$i | |
done | |
for i in `seq 1 1 4`; | |
do | |
python ../tools/eval.py result$i gold$i 2> eval$i; | |
done | |
cat eval[1-4] | python ../tools/eval_total.py | |
## learner = tinysvm | |
# all | |
jdepp -t 0 -I 1 -l 1 -c corpus -m model/knbc -- -t 0 | |
svm_learn -t 1 -d 2 -c 1 model/knbc/chunk.train model/knbc/chunk | |
jdepp -t 3 -I 1 -l 1 -c corpus -m model/knbc -- -t 0 -- -s 0.02 -i 5 -t 1 | |
jdepp -t 0 -I 2 -l 1 -c corpus -m model/knbc -- -t 0 | |
svm_learn -t 1 -d 2 -c 1 model/knbc/depnd.p0.train model/knbc/depnd.p0 | |
jdepp -t 3 -I 2 -l 1 -c corpus -m model/knbc -- -t 0 -- -- -s 0.005 -i 5 -t 1 | |
cat corpus | python ../tools/to_sent.py | mecab -d /usr/local/lib/mecab/dic/jumandic | jdepp -m model/knbc > result | |
# cv | |
for i in `seq 1 1 4`; | |
do | |
mkdir -p model/knbc$i && rm -rf model/knbc$i/* | |
jdepp -t 0 -I 1 -c corpus$i -m model/knbc$i -- -t 0 | |
svm_learn -t 1 -d 2 -c 1 model/knbc$i/chunk.train model/knbc$i/chunk | |
jdepp -t 3 -I 1 -c corpus$i -m model/knbc$i -- -t 0 -- -s 0.02 -i 5 -t 1; | |
jdepp -t 0 -I 2 -c corpus$i -m model/knbc$i -- -t 0 | |
svm_learn -t 1 -d 2 -c 1 model/knbc$i/depnd.p0.train model/knbc$i/depnd.p0 | |
jdepp -t 3 -I 2 -c corpus$i -m model/knbc$i -- -t 0 -- -- -s 0.005 -i 5 -t 1; | |
cat gold$i | python ../tools/to_sent.py | mecab -d /usr/local/lib/mecab/dic/jumandic | jdepp -m model/knbc$i > result$i | |
done |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment