Last active
September 1, 2019 17:32
-
-
Save hiroshi-maybe/e79b8c2ab1d052619e5bf72833ef5d34 to your computer and use it in GitHub Desktop.
Exercise solutions of 3dmath
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
const deg2rad = (a: number): number => { | |
a%=360; | |
a=(a+360)%360; | |
return Math.PI*a/180; | |
}; | |
class mx3 { | |
constructor(public rows: [vec3, vec3, vec3]) {} | |
transpose(): mx3 { | |
return new mx3([ | |
new vec3(this.rows[0].x,this.rows[1].x,this.rows[2].x), | |
new vec3(this.rows[0].y,this.rows[1].y,this.rows[2].y), | |
new vec3(this.rows[0].z,this.rows[1].z,this.rows[2].z) | |
]); | |
} | |
mult(M: mx3): mx3 { | |
const MM=M.transpose(); | |
let rs:vec3[]=[]; | |
for(let i=0; i<3; ++i) { | |
let cs:[number,number,number]=[0,0,0]; | |
for(let j=0; j<3; ++j) cs[j]=this.rows[i].dotprod(MM.rows[j]); | |
rs[i]=vec3.init(cs); | |
} | |
return new mx3([rs[0],rs[1],rs[2]]); | |
} | |
} | |
class vec3 { | |
constructor(public x: number, public y: number, public z: number) {} | |
static init(ns: [number, number, number]) { | |
return new vec3(ns[0], ns[1], ns[2]); | |
} | |
mult(k: number): vec3; | |
mult(M: mx3): vec3; | |
mult(x: any): vec3 { | |
if(typeof x === "number") { return new vec3(this.x*x, this.y*x, this.z*x); } | |
return new vec3( | |
this.dotprod(x.rows[0]), | |
this.dotprod(x.rows[1]), | |
this.dotprod(x.rows[2]) | |
); | |
} | |
add(that: vec3): vec3 { | |
return new vec3( | |
this.x+that.x, | |
this.y+that.y, | |
this.z+that.z | |
); | |
} | |
negate(): vec3 { return this.mult(-1); } | |
sub(that: vec3): vec3 { return this.add(that.negate()); } | |
dotprod(that: vec3): number { return this.x*that.x+this.y*that.y+this.z*that.z; } | |
crossprod(that: vec3): vec3 { return new vec3(this.y*that.z-that.y*this.z, this.x*that.z-that.x*this.z, this.x*that.y-that.x*this.y); } | |
abs(): number { return Math.sqrt(this.x*this.x+this.y*this.y+this.z*this.z); } | |
parallel(n: vec3): vec3 { return n.mult(this.dotprod(n)); } | |
perpendicular(n: vec3): vec3 { return this.sub(this.parallel(n)); } | |
// 5.1 rotation | |
static rotateM(naxis: vec3, rad: number): mx3 { | |
const nx=naxis.x, ny=naxis.y, nz=naxis.z; | |
const r0 = new vec3( | |
nx*nx*(1-Math.cos(rad))+Math.cos(rad), | |
nx*ny*(1-Math.cos(rad))+nz*Math.sin(rad), | |
nx*nz*(1-Math.cos(rad))-ny*Math.sin(rad) | |
); | |
const r1 = new vec3( | |
nx*ny*(1-Math.cos(rad))-nz*Math.sin(rad), | |
ny*ny*(1-Math.cos(rad))+Math.cos(rad), | |
ny*nz*(1-Math.cos(rad))+nx*Math.sin(rad) | |
); | |
const r2 = new vec3( | |
nx*nz*(1-Math.cos(rad))+ny*Math.sin(rad), | |
ny*nz*(1-Math.cos(rad))-nx*Math.sin(rad), | |
nz*nz*(1-Math.cos(rad))+Math.cos(rad) | |
); | |
return new mx3([r0,r1,r2]); | |
} | |
// 5.2 scale | |
static scaleM(naxis: vec3, k: number): mx3 { | |
const nx=naxis.x, ny=naxis.y, nz=naxis.z; | |
const r0 = new vec3( | |
1+(k-1)*nx*nx, | |
(k-1)*nx*ny, | |
(k-1)*nx*nz | |
); | |
const r1 = new vec3( | |
(k-1)*nx*ny, | |
1+(k-1)*ny*ny, | |
(k-1)*ny*nz | |
); | |
const r2 = new vec3( | |
(k-1)*nx*nz, | |
(k-1)*ny*nz, | |
1+(k-1)*nz*nz | |
); | |
return new mx3([r0,r1,r2]); | |
} | |
// 5.3 projection | |
static projM(naxis: vec3): mx3 { return vec3.scaleM(naxis, 0); } | |
// 5.4 reflection | |
static reflM(naxis: vec3): mx3 { return vec3.scaleM(naxis, -1); } | |
rotate(naxis: vec3, rad: number): vec3 { | |
/* const w = this.crossprod(naxis); | |
const vper = this.perpendicular(naxis); | |
const vper2 = vper.mult(Math.cos(rad)).add(w.mult(Math.sin(rad))); | |
return vper2.add(this.parallel(naxis));*/ | |
const M = vec3.rotateM(naxis, rad); | |
return this.mult(M); | |
} | |
// 5.2 scale | |
scale(naxis: vec3, k: number): vec3 { | |
const vper = this.perpendicular(naxis); | |
const vpar2 = this.parallel(naxis).mult(k); | |
return this.add(naxis.mult(this.dotprod(naxis)).mult(k-1)); | |
} | |
} | |
// Ao->Au->Aw | |
// Au = Ao_x*p + Ao_y*q + Ao_z*r | |
// Aw = Au + u_org | |
const trans_o2u = (Ao: vec3, p: vec3, q: vec3, r: vec3): vec3 => ( | |
p.mult(Ao.x).add(q.mult(Ao.y)).add(r.mult(Ao.z)) | |
); | |
const trans_u2w = (uorg: vec3, Au: vec3): vec3 => ( uorg.add(Au) ); | |
const trans_o2w = (Ao: vec3, p: vec3, q: vec3, r: vec3, uorg: vec3): vec3 => ( | |
trans_u2w(uorg, trans_o2u(Ao,p,q,r)) | |
); | |
// Aw->Au->Ao | |
// Au = Aw - u_org | |
// Ao = [Au∙p, Au∙q, Au∙r] if p,q,r are orthonormal (perpendicular and unit length) | |
const trans_w2u = (uorg: vec3, Aw: vec3): vec3 => ( Aw.sub(uorg) ); | |
const trans_u2o = (Au: vec3, p: vec3, q: vec3, r: vec3) => ( | |
vec3.init([Au.dotprod(p), Au.dotprod(q), Au.dotprod(r)]) | |
); | |
const trans_w2o = (Aw: vec3, p: vec3, q: vec3, r: vec3, uorg: vec3): vec3 => ( | |
trans_u2o(trans_w2u(uorg, Aw), p, q, r) | |
); | |
{ | |
console.log("Ex 3.6"); | |
const Ao: vec3[] = [ | |
vec3.init([-1,2,0]), | |
vec3.init([1,2,0]), | |
vec3.init([0,0,0]), | |
vec3.init([1,5,0.5]), | |
vec3.init([0,5,10]) | |
]; | |
const uorg = vec3.init([1,10,3]); | |
const p=vec3.init([0.866,0,-0.5]); | |
const q=vec3.init([0,1,0]); | |
const r=vec3.init([0.5,0,0.866]); | |
const resu = Ao.map((v: vec3) => (trans_o2u(v,p,q,r))); | |
const resw = Ao.map((v: vec3) => (trans_o2w(v,p,q,r,uorg))); | |
console.log(resu); | |
console.log(resw); | |
const Aw: vec3[] = [ | |
vec3.init([1,10,3]), | |
vec3.init([0,0,0]), | |
vec3.init([2.732,10,2.000]), | |
vec3.init([2,11,4]), | |
vec3.init([1,20,3]) | |
]; | |
const resuu = Aw.map((v: vec3) => (trans_w2u(uorg,v))); | |
const reso = Aw.map((v: vec3) => (trans_w2o(v,p,q,r,uorg))); | |
console.log(resuu); | |
console.log(reso); | |
} | |
{ | |
console.log("Ex 5.8"); | |
console.log("Q2",vec3.rotateM(new vec3(1,0,0), deg2rad(-22))); | |
console.log("Q3",vec3.rotateM(new vec3(0,1,0), deg2rad(30))); | |
console.log("Q4",vec3.rotateM(new vec3(0.267,-0.535,0.802), deg2rad(-15))); | |
console.log("Q6",vec3.scaleM(new vec3(0.267,-0.535,0.802), 5)); | |
console.log("Q7",vec3.projM(new vec3(0.267,-0.535,0.802))); | |
console.log("Q8",vec3.reflM(new vec3(0.267,-0.535,0.802))); | |
const M1=vec3.rotateM(new vec3(0,1,0), deg2rad(30)),M2=vec3.rotateM(new vec3(1,0,0), deg2rad(-22)); | |
console.log("Q9-1",M1.mult(M2)); | |
const M1p=vec3.rotateM(new vec3(0,1,0), deg2rad(-30)),M2p=vec3.rotateM(new vec3(1,0,0), deg2rad(22)); | |
console.log("Q9-2",M2p.mult(M1p)); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment