Forked from fchollet/classifier_from_little_data_script_3.py
Last active
January 21, 2018 22:51
-
-
Save hiroyachiba/925c64a0f5cb1bfadfe1b9ff8bdcc770 to your computer and use it in GitHub Desktop.
Fine-tuning a Keras model.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''This script goes along the blog post | |
"Building powerful image classification models using very little data" | |
from blog.keras.io. | |
It uses data that can be downloaded at: | |
https://www.kaggle.com/c/dogs-vs-cats/data | |
In our setup, we: | |
- created a data/ folder | |
- created train/ and validation/ subfolders inside data/ | |
- created cats/ and dogs/ subfolders inside train/ and validation/ | |
- put the cat pictures index 0-999 in data/train/cats | |
- put the cat pictures index 1000-1400 in data/validation/cats | |
- put the dogs pictures index 12500-13499 in data/train/dogs | |
- put the dog pictures index 13500-13900 in data/validation/dogs | |
So that we have 1000 training examples for each class, and 400 validation examples for each class. | |
In summary, this is our directory structure: | |
``` | |
data/ | |
train/ | |
dogs/ | |
dog001.jpg | |
dog002.jpg | |
... | |
cats/ | |
cat001.jpg | |
cat002.jpg | |
... | |
validation/ | |
dogs/ | |
dog001.jpg | |
dog002.jpg | |
... | |
cats/ | |
cat001.jpg | |
cat002.jpg | |
... | |
``` | |
''' | |
import numpy as np | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras import optimizers | |
from keras.models import Sequential, Model | |
from keras.layers import Convolution2D, MaxPooling2D, ZeroPadding2D | |
from keras.layers import Activation, Dropout, Flatten, Dense, Input | |
from keras.applications.vgg16 import VGG16 | |
# dimensions of our images. | |
img_width, img_height = 150, 150 | |
train_data_dir = 'data/train' | |
validation_data_dir = 'data/validation' | |
nb_train_samples = 2000 | |
nb_validation_samples = 800 | |
nb_epoch = 50 | |
input_tensor = Input(shape=(img_width, img_height, 3)) | |
vgg16_model = VGG16(include_top=False, input_tensor=input_tensor) | |
print(vgg16_model.summary()) | |
for layer in vgg16_model.layers[:15]: | |
layer.trainable = False | |
# build a classifier model to put on top of the convolutional model | |
top_model = Sequential() | |
top_model.add(Flatten(input_shape=vgg16_model.output_shape[1:])) | |
top_model.add(Dense(256, activation='relu')) | |
top_model.add(Dropout(0.5)) | |
top_model.add(Dense(1, activation='sigmoid')) | |
model = Model(input=vgg16_model.input, output=top_model(vgg16_model.output)) | |
# compile the model with a SGD/momentum optimizer | |
# and a very slow learning rate. | |
model.compile(loss='binary_crossentropy', | |
optimizer=optimizers.SGD(lr=1e-4, momentum=0.9), | |
metrics=['accuracy']) | |
# prepare data augmentation configuration | |
train_datagen = ImageDataGenerator( | |
rescale=1./255, | |
shear_range=0.2, | |
zoom_range=0.2, | |
horizontal_flip=True) | |
test_datagen = ImageDataGenerator(rescale=1./255) | |
train_generator = train_datagen.flow_from_directory( | |
train_data_dir, | |
target_size=(img_height, img_width), | |
batch_size=32, | |
class_mode='binary') | |
validation_generator = test_datagen.flow_from_directory( | |
validation_data_dir, | |
target_size=(img_height, img_width), | |
batch_size=32, | |
class_mode='binary') | |
# fine-tune the model | |
model.fit_generator( | |
train_generator, | |
samples_per_epoch=nb_train_samples, | |
nb_epoch=nb_epoch, | |
validation_data=validation_generator, | |
nb_val_samples=nb_validation_samples) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment