Created
January 27, 2017 17:35
-
-
Save hiwonjoon/6afbbf390af77293ea259a11c2cac079 to your computer and use it in GitHub Desktop.
Feature Extrcation and Write TF Record example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import os | |
import tensorflow as tf | |
import vgg | |
import vgg_preprocessing | |
from pycocotools.coco import COCO | |
slim = tf.contrib.slim | |
LOG_DIR = './log/fe' | |
SUMMARY_PERIOD = 100 | |
BATCH_SIZE = 128 | |
IMAGE_HEIGHT = vgg.vgg_19.default_image_size | |
IMAGE_WIDTH = vgg.vgg_19.default_image_size | |
DATA_DIR='/home/nine/datasets/coco' | |
MODEL_PATH = './vgg_19.ckpt' | |
tf.set_random_seed(0) | |
# Dataset Reader / Writer | |
# TODO : change file format to TFRecord for better queue performance. | |
coco = COCO('%s/annotations/instances_%s.json'%(DATA_DIR,'train2014')) | |
annIds = coco.getAnnIds() | |
filenames = [] | |
bboxes = np.zeros((len(annIds),4),np.int32) | |
cats = np.zeros((len(annIds),),np.int32) | |
anno_count = 0 | |
for annId in annIds : | |
anno = coco.loadAnns(annId)[0] | |
img = coco.loadImgs(anno['image_id'])[0] | |
filename = '%s/train2014/%s'%(DATA_DIR,img['file_name']) | |
bbox = anno['bbox'] | |
cat = anno['category_id'] | |
if( anno['area'] <= 200.0 ) : continue | |
filenames.append(filename) | |
bboxes[anno_count] = bbox | |
cats[anno_count] = cat | |
anno_count += 1 | |
print("choose %d regions among %d regions"%(len(annIds),anno_count)) | |
bboxes = bboxes[:anno_count] | |
cats = cats[:anno_count] | |
annId, filename, bbox, cat = tf.train.slice_input_producer([annIds,filenames,bboxes,cats],num_epochs=1,shuffle=False) | |
file_contents = tf.read_file(filename) | |
whole_image = tf.image.decode_jpeg(file_contents, channels=3) | |
cropped_image = tf.image.crop_to_bounding_box(whole_image,bbox[1],bbox[0],bbox[3],bbox[2]) | |
# TODO : ignore aspect preserving? | |
# cropped_image = tf.image.resize_images(cropped_image,[256,256]) | |
preprocessed_image = vgg_preprocessing.preprocess_image( | |
cropped_image, IMAGE_HEIGHT, IMAGE_WIDTH, is_training = False) | |
# Build image batch | |
ids, images, labels = tf.train.batch( | |
[annId, preprocessed_image, cat], | |
# whole_images, cropped_images, images = tf.train.batch( | |
# [tf.image.resize_images(whole_image,[224,224]), | |
# tf.image.resize_images(cropped_image,[224,224]), | |
# preprocessed_image], #For debugging. | |
batch_size=BATCH_SIZE, | |
num_threads=2, | |
capacity=5*BATCH_SIZE) | |
#tf.summary.image('whole_images',whole_images,max_outputs=10) | |
#tf.summary.image('cropped_images',cropped_images,max_outputs=10) | |
tf.summary.image('images',images,max_outputs=10) | |
# Define base model | |
with slim.arg_scope(vgg.vgg_arg_scope()): # For weight decay. | |
logits, end_points = vgg.vgg_19(images,is_training=False) | |
fc7 = end_points['vgg_19/fc7'] | |
variables_to_restore = slim.get_variables_to_restore() | |
# Saving Operations | |
saver = tf.train.Saver(max_to_keep = 5) | |
# Summary Operations | |
summary_op = tf.summary.merge_all() | |
# Queue ,Threads and Summary Writer | |
sess = tf.Session() | |
summary_writer = tf.summary.FileWriter(LOG_DIR,sess.graph) | |
coord = tf.train.Coordinator() | |
sess.run(tf.global_variables_initializer()) | |
sess.run(tf.local_variables_initializer()) | |
saver.restore(sess, MODEL_PATH) | |
#assert( len(sess.run(tf.report_uninitialized_variables())) == 0 ) | |
writer = tf.python_io.TFRecordWriter(os.path.join('./feature_extracted.tfrecords')) | |
# Start Queueing | |
threads = tf.train.start_queue_runners(coord=coord,sess=sess) | |
try: | |
def _int64_feature(value): | |
value = value if type(value) == list else [value] | |
return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) | |
def _bytes_feature(value): | |
value = value if type(value) == list else [value] | |
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) | |
def _float_feature(value): | |
value = value if type(value) == list else [value] | |
return tf.train.Feature(float_list=tf.train.FloatList(value=value)) | |
step = 0 | |
while(True): # Slice Input producer will throw OutOfRange exception | |
if coord.should_stop() : | |
break | |
ids_val, fc7_val, summary_str = sess.run([ids, fc7,summary_op]) | |
if( step % SUMMARY_PERIOD == 0 ) : | |
summary_writer.add_summary(summary_str,step) | |
# Write in TF Record formats | |
for i,id_val in enumerate(ids_val) : | |
anno = coco.loadAnns(int(id_val))[0] | |
img = coco.loadImgs(anno['image_id'])[0] | |
filename = img['file_name'] | |
bbox = anno['bbox'] | |
cat = anno['category_id'] | |
instance = tf.train.Example(features=tf.train.Features(feature={ | |
'annId' : _int64_feature(id_val), | |
'vgg19' : _float_feature(np.ndarray.tolist(fc7_val[i,0,0,:])), | |
'filename': _bytes_feature(filename.encode('ascii','ignore')), | |
'bbox' : _float_feature(bbox), | |
'cat' : _int64_feature(cat) | |
})) | |
writer.write(instance.SerializeToString()) | |
step+=1; print(step, np.count_nonzero(fc7_val)/(np.shape(fc7_val)[0])) | |
except Exception, e: | |
coord.request_stop(e) | |
finally : | |
coord.request_stop() | |
coord.join(threads) | |
writer.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment