Skip to content

Instantly share code, notes, and snippets.

@hizkifw
Created June 2, 2020 13:36
Show Gist options
  • Save hizkifw/a9c9c0702f5513184aebef2e564c33b4 to your computer and use it in GitHub Desktop.
Save hizkifw/a9c9c0702f5513184aebef2e564c33b4 to your computer and use it in GitHub Desktop.
some face tracking thing
# USAGE
# wget https://github.com/AKSHAYUBHAT/TensorFace/raw/master/openface/models/dlib/shape_predictor_68_face_landmarks.dat
# python3 video_facial_landmarks.py
# import the necessary packages
from socket import *
from imutils.video import VideoStream
from imutils import face_utils
from scipy import signal
import datetime
import argparse
import imutils
import time
import dlib
import cv2
import json
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", default="shape_predictor_68_face_landmarks.dat",
help="path to facial landmark predictor")
ap.add_argument("-r", "--picamera", type=int, default=-1,
help="whether or not the Raspberry Pi camera should be used")
args = vars(ap.parse_args())
# initialize dlib's face detector (HOG-based) and then create
# the facial landmark predictor
print("[INFO] loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
# initialize the video stream and allow the cammera sensor to warmup
print("[INFO] camera sensor warming up...")
vs = VideoStream(usePiCamera=args["picamera"] > 0).start()
time.sleep(2.0)
shape_history = []
history_size = 15
last_rects = None
cs = socket(AF_INET, SOCK_DGRAM)
cs.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
frame_no = 0
# loop over the frames from the video stream
while True:
frame_no += 1
# grab the frame from the threaded video stream, resize it to
# have a maximum width of 400 pixels, and convert it to
# grayscale
frame = vs.read()
frame = imutils.resize(frame, width=400)
frame = cv2.flip(frame, 1)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale frame
rects = detector(gray, 0)
scale_factor = 3
frame = imutils.resize(frame, width=400*scale_factor)
if len(rects) == 0 and not last_rects is None:
rects = last_rects
else:
last_rects = rects
# loop over the face detections
for rect in rects:
# determine the facial landmarks for the face region, then
# convert the facial landmark (x, y)-coordinates to a NumPy
# array
shape_raw = predictor(gray, rect)
shape_raw = face_utils.shape_to_np(shape_raw)
shape_history.append(shape_raw)
if len(shape_history) > history_size:
shape_history.pop(0)
#shape_filtered = signal.savgol_filter(shape_history[0], 5, 2, axis=1)
shape_filtered = [None]*68
for i in range(68):
shape_filtered[i] = shape_history[0][i]
for snapshot in shape_history:
for idx, shape in enumerate(snapshot):
shape_filtered[idx] = [
(2*shape_filtered[idx][0] + shape[0]) / 3,
(2*shape_filtered[idx][1] + shape[1]) / 3
]
for idx, shape in enumerate(shape_filtered):
shape_filtered[idx] = [
int(shape[0]),
int(shape[1])
]
# loop over the (x, y)-coordinates for the facial landmarks
# and draw them on the image
"""
for idx, (x, y) in enumerate(shape_filtered):
cv2.circle(frame, (x*scale_factor, y*scale_factor), 1, (0, 0, 255), -1)
cv2.putText(frame, str(idx), (x*scale_factor, y*scale_factor),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
"""
lines = [
(36, 45), # horizontal
(27, 8), # vertical
(36, 8), # left eye to chin
(45, 8), # right eye to chin
(36, 30), # left eye to nose tip
(45, 30), # right eye to nose tip
(27, 30), # nose bridge
(30, 8), # nose tip to chin
(31, 35), # nose bottom
(31, 30), # nose bottom left to tip
(35, 30), # nose bottom right to tip
(65, 67), # bottom inner lip
(61, 63), # top inner lip
]
for line in lines:
cv2.line(frame, (shape_filtered[line[0]][0]*scale_factor, shape_filtered[line[0]][1]*scale_factor), (shape_filtered[line[1]][0]*scale_factor, shape_filtered[line[1]][1]*scale_factor), (0, 255, 0), 1)
cs.sendto(json.dumps(shape_filtered).encode(), ("127.0.0.1", 50000))
# show the frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
import hypermedia.net.*;
int PORT_RX = 50000;
String HOST_IP = "127.0.0.1"; //IP Address of the PC in which this App is running
UDP udp; //Create UDP object for recieving
String lastJSON = "[[143, 147], [142, 157], [144, 167], [146, 178], [149, 188], [153, 197], [159, 205], [166, 211], [176, 214], [188, 213], [200, 209], [211, 204], [221, 197], [227, 187], [231, 175], [233, 162], [234, 149], [147, 136], [151, 131], [158, 129], [166, 130], [172, 133], [183, 134], [192, 131], [201, 130], [210, 133], [217, 138], [176, 145], [175, 151], [174, 157], [173, 163], [168, 171], [171, 173], [175, 174], [180, 173], [185, 172], [155, 147], [158, 145], [163, 145], [168, 147], [163, 148], [158, 148], [191, 148], [196, 146], [201, 146], [207, 148], [201, 150], [196, 149], [163, 189], [167, 184], [171, 181], [175, 182], [179, 181], [185, 184], [192, 189], [185, 193], [179, 194], [175, 195], [171, 194], [167, 193], [166, 188], [171, 186], [175, 186], [179, 186], [189, 189], [179, 188], [175, 189], [171, 188]]";
float pointLineDistance(float lx1, float ly1, float lx2, float ly2, float px, float py) {
return
abs(((ly2 - ly1) * px) - ((lx2 - lx1) * py) + (lx2 * ly1) - (ly2 * lx1)) /
sqrt(pow(ly2 - ly1, 2) + pow(lx2 - lx1, 2));
}
float pointDistance(float px1, float py1, float px2, float py2) {
return
sqrt(
pow(px2 - px1, 2) +
pow(py2 - py1, 2)
);
}
float rotationX, rotationY, rotationZ, midpointX, midpointY, mouthDistance, headSize;
float lerpAmount = 0.35;
void setup() {
udp = new UDP(this, PORT_RX, HOST_IP);
udp.log(true);
udp.listen(true);
frame.setTitle("Homemade Virtual Avatar");
size(1280, 720, P3D);
background(0);
lights();
stroke(255);
}
void draw() {
clear();
background(0, 255, 0);
try {
JSONArray values = parseJSONArray(lastJSON);
JSONArray pEyeLeft = values.getJSONArray(36);
JSONArray pEyeRight = values.getJSONArray(45);
JSONArray pNoseTip = values.getJSONArray(30);
JSONArray pNoseTop = values.getJSONArray(27);
JSONArray pChin = values.getJSONArray(8);
JSONArray pMouthTop = values.getJSONArray(62);
JSONArray pMouthBottom = values.getJSONArray(66);
// Head position
midpointX = lerp(midpointX, (pEyeLeft.getInt(0) + pEyeRight.getInt(0) + pChin.getInt(0)) / 3 * 1280 / 400, lerpAmount);
midpointY = lerp(midpointY, (pEyeLeft.getInt(1) + pEyeRight.getInt(1) + pChin.getInt(1)) / 3 * 720 / 300, lerpAmount);
// Yes
rotationX = lerp(rotationX, pointLineDistance(
pEyeLeft.getInt(0), pEyeLeft.getInt(1),
pEyeRight.getInt(0), pEyeRight.getInt(1),
pNoseTop.getInt(0), pNoseTop.getInt(1)
) / 500 * 8 * PI, lerpAmount);
// No
rotationY = lerp(rotationY, pointLineDistance(
pNoseTop.getInt(0), pNoseTop.getInt(1),
pChin.getInt(0), pChin.getInt(1),
pNoseTip.getInt(0), pNoseTip.getInt(1)
) / 500 * 8 * PI * (pNoseTip.getInt(0) > (pNoseTop.getInt(0) + pChin.getInt(0)) / 2 ? 1 : -1), lerpAmount);
// What
rotationZ = lerp(rotationZ, atan2(
pEyeRight.getInt(1) - pEyeLeft.getInt(1),
pEyeRight.getInt(0) - pEyeLeft.getInt(0)
), lerpAmount);
// Mouth distance (0.0f - 1.0f)
mouthDistance = lerp(mouthDistance,
max(0, min(5, pointDistance(
pMouthTop.getInt(0), pMouthTop.getInt(1),
pMouthBottom.getInt(0), pMouthBottom.getInt(1)
)-5)) / 5.0, lerpAmount);
// Head size
// Approx. 30.0f to 80.0f
headSize = lerp(headSize,
pointDistance(
pEyeLeft.getInt(0), pEyeLeft.getInt(1),
pEyeRight.getInt(0), pEyeRight.getInt(1)
), lerpAmount);
System.out.println(headSize);
pushMatrix();
{
// NOTE: headSize causes a lot of jitter
// translate(midpointX, midpointY);
translate(midpointX, midpointY, headSize * 5);
rotateX(rotationX);
rotateY(rotationY);
rotateZ(rotationZ);
// head
fill(255 * mouthDistance);
stroke(255 * (1-mouthDistance));
box(100);
fill(255);
stroke(0);
translate(-15, -15, 50);
box(10);
translate(30, 0, 0);
box(10);
}
popMatrix();
}
catch(Exception e) {
e.printStackTrace();
}
}
void receive(byte[] data, String ip, int port) {
//System.out.println(new String(data).trim());
lastJSON = new String(data).trim();
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment