Created
August 2, 2012 09:07
-
-
Save hoheinzollern/3235662 to your computer and use it in GitHub Desktop.
Clustering in Weka
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import java.awt.Container; | |
import java.awt.GridLayout; | |
import java.util.ArrayList; | |
import javax.swing.JFrame; | |
import weka.clusterers.HierarchicalClusterer; | |
import weka.core.Attribute; | |
import weka.core.DenseInstance; | |
import weka.core.EuclideanDistance; | |
import weka.core.Instances; | |
import weka.gui.hierarchyvisualizer.HierarchyVisualizer; | |
public class WekaTest { | |
static HierarchicalClusterer clusterer; | |
static Instances data; | |
/** | |
* @param args | |
* @throws Exception | |
*/ | |
public static void main(String[] args) throws Exception { | |
// Instantiate clusterer | |
clusterer = new HierarchicalClusterer(); | |
clusterer.setOptions(new String[] {"-L", "COMPLETE"}); | |
clusterer.setDebug(true); | |
clusterer.setNumClusters(2); | |
clusterer.setDistanceFunction(new EuclideanDistance()); | |
clusterer.setDistanceIsBranchLength(true); | |
// Build dataset | |
ArrayList<Attribute> attributes = new ArrayList<Attribute>(); | |
attributes.add(new Attribute("A")); | |
attributes.add(new Attribute("B")); | |
attributes.add(new Attribute("C")); | |
data = new Instances("Weka test", attributes, 3); | |
// Add data | |
data.add(new DenseInstance(1.0, new double[] { 1.0, 0.0, 1.0 })); | |
data.add(new DenseInstance(1.0, new double[] { 0.5, 0.0, 1.0 })); | |
data.add(new DenseInstance(1.0, new double[] { 0.0, 1.0, 0.0 })); | |
data.add(new DenseInstance(1.0, new double[] { 0.0, 1.0, 0.3 })); | |
// Cluster network | |
clusterer.buildClusterer(data); | |
// Print normal | |
clusterer.setPrintNewick(false); | |
System.out.println(clusterer.graph()); | |
// Print Newick | |
clusterer.setPrintNewick(true); | |
System.out.println(clusterer.graph()); | |
// Let's try to show this clustered data! | |
JFrame mainFrame = new JFrame("Weka Test"); | |
mainFrame.setSize(600, 400); | |
mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); | |
Container content = mainFrame.getContentPane(); | |
content.setLayout(new GridLayout(1, 1)); | |
HierarchyVisualizer visualizer = new HierarchyVisualizer(clusterer.graph()); | |
content.add(visualizer); | |
mainFrame.setVisible(true); | |
} | |
} |
From my dataset I want to make 50 clusters then collect all centroids of clusters in .csv file? what changes would be in this code?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Is there a way to visualize cluster assignments with kmeans cluster (get the graph)?