Last active
December 15, 2015 08:05
-
-
Save hokkun-dayo/ff01fa94ac319e3ac538 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Written by Hokuto Kagaya, Dec. 2015 | |
ver 0.1 | |
""" | |
import numpy | |
from chainer import cuda | |
from chainer import function | |
from chainer.utils import type_check | |
class ProbAverage(function.Function): | |
"""Average probabilities.""" | |
def __init__(self, ctof=None, ftoc=None, fine_size=None): | |
self.ctof = ctof | |
self.ftoc = ftoc | |
self.fine_size = fine_size | |
def check_type_forward(self, in_types): | |
type_check.expect(in_types.size() == 1 + len(self.ctof)) | |
c_type = in_types[0] | |
fs_type = in_types[1:] | |
# type_check.expect(fs_type.size() > 0) | |
def forward(self, inputs): | |
xp = cuda.get_array_module(*inputs) | |
xc = inputs[0] | |
xhs = inputs[1:] | |
batch_size = xc.shape[0] | |
coarse_size = xc[0].shape[0] | |
y = xp.zeros((batch_size, self.fine_size), dtype=numpy.float32) | |
for b in xrange(batch_size): | |
xcb = xc[b] | |
for c in xrange(coarse_size): | |
each_fine_size = len(self.ctof[c]) | |
for k in xrange(each_fine_size): | |
y[b][self.ctof[c][k]] += xhs[c][b][k] * xcb[c] | |
return y, | |
def backward(self, xs, gy): | |
xp = cuda.get_array_module(*xs) | |
_gy = gy[0] | |
assert _gy.shape[1] == self.fine_size | |
ret_to_backward = [xp.zeros((_gy.shape[0], len(self.ctof)), dtype=numpy.float32) if i == 0 else xp.zeros((_gy.shape[0], len(self.ctof[i-1])), dtype=numpy.float32) for i in xrange(len(self.ctof)+1)] | |
for i in xrange(_gy.shape[0]): | |
for f in xrange(self.fine_size): | |
f_ftoc = self.ftoc[f] | |
for c in f_ftoc: | |
c_ctof = self.ctof[c] | |
ret_to_backward[c+1][i][c_ctof.index(f)] += _gy[i][f] * xs[0][i][c] | |
ret_to_backward[0][i][c] += _gy[i][f] * xs[c+1][i][c_ctof.index(f)] | |
return tuple(ret_to_backward) | |
def prob_average(xc, xfs, ctof, ftoc, fine_size): | |
"""Average probabilities. | |
Args: | |
xs (tuple of Variables): Variables to be concatenated. | |
axis (int): Axis that the input arrays are concatenated along. | |
Returns: | |
~chainer.Variable: Output variable. | |
""" | |
return ProbAverage(ctof, ftoc, fine_size)(xc, *xfs) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment