Skip to content

Instantly share code, notes, and snippets.

@holysugar
Last active April 11, 2018 09:07
Show Gist options
  • Save holysugar/a0f68291b222a9a0922ff75cde6f1031 to your computer and use it in GitHub Desktop.
Save holysugar/a0f68291b222a9a0922ff75cde6f1031 to your computer and use it in GitHub Desktop.
コンプガチャ期待値
class Calc
NUMBER = {
n: 16,
r: 13,
sr: 3,
}
RATE = {
n: 0.79,
r: 0.18,
sr: 0.03,
}
def initialize
@expected = {}
end
# [n, r, sr] 枚持っている時に、あと何回引けばコンプできるかの期待値
def expected(n, r, sr)
return 0.0 if NUMBER[:n] == n && NUMBER[:r] == r && NUMBER[:sr] == sr
# 漸化式
# E(n,r,sr) = 1
# + E(n+1,r,sr) * [n,r,sr]枚持っているときに新しいNを引く確率 ... (1)
# + E(n,r+1,sr) * [n,r,sr]枚持っているときに新しいRを引く確率 ... (2)
# + E(n,r,sr+1) * [n,r,sr]枚持っているときに新しいSRを引く確率 ... (3)
# + E(n,r,sr) * 新しいカードを引かない確率 ... (4)
#
# を展開する ((4) を左辺に移行し、 1-(新しいカードを引かない確率) , つまり「新しいカードを引く確率」で両辺を割る)
@expected[ [n,r,sr] ] ||= ( 1 +
( n < NUMBER[:n] ? expected(n + 1, r, sr) * success_rate_in(:n, n) * RATE[:n] : 0 ) +
( r < NUMBER[:r] ? expected(n, r + 1, sr) * success_rate_in(:r, r) * RATE[:r] : 0 ) +
( sr < NUMBER[:sr] ? expected(n, r, sr + 1) * success_rate_in(:sr, sr) * RATE[:sr] : 0 )
) / success_rate(n, r, sr)
end
# 新しいカードを引く確率
def success_rate(n, r, sr)
success_rate_in(:n, n) * RATE[:n] +
success_rate_in(:r, r) * RATE[:r] +
success_rate_in(:sr, sr) * RATE[:sr]
end
# 該当レアリティ内で current_number 枚持っている時に新しいカードを引く確率
def success_rate_in(type, current_number)
(NUMBER[type]-current_number).to_f / NUMBER[type]
end
end
x = Calc.new
p x.expected(15, 12, 2)
p x.expected(0, 0, 0)
@holysugar
Copy link
Author

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment