The script is for IT employees who work in Shanghai office.
Feel free to contact me if you have any questions.
| #if defined(ESP32) | |
| #include <WiFiMulti.h> | |
| WiFiMulti wifiMulti; | |
| #define DEVICE "ESP32" | |
| #elif defined(ESP8266) | |
| #include <ESP8266WiFiMulti.h> | |
| ESP8266WiFiMulti wifiMulti; | |
| #define DEVICE "ESP8266" | |
| #endif |
| """ | |
| you may run this example with uvicorn, by using this command: | |
| uvicorn opalogger:app --reload | |
| """ | |
| import gzip | |
| from typing import Callable, List | |
| from fastapi import Body, FastAPI, Request, Response |
| version: "3.8" | |
| services: | |
| # When scaling the opal-server to multiple nodes and/or multiple workers, we use | |
| # a *broadcast* channel to sync between all the instances of opal-server. | |
| # Under the hood, this channel is implemented by encode/broadcaster (see link below). | |
| # At the moment, the broadcast channel can be either: postgresdb, redis or kafka. | |
| # The format of the broadcaster URI string (the one we pass to opal server as `OPAL_BROADCAST_URI`) is specified here: | |
| # https://github.com/encode/broadcaster#available-backends | |
| broadcast_channel: | |
| image: postgres:alpine |
git config filter.strip-notebook-output.clean 'jupyter nbconvert --ClearOutputPreprocessor.enabled=True --to=notebook --stdin --stdout --log-level=ERROR'
Create a .gitattributes file inside the directory with the notebooks
Add the following to that file:
| <link rel="shortcut icon" width=32px> | |
| <canvas style="display: none" id="loader" width="16" height="16"></canvas> | |
| <script> | |
| class Loader { | |
| constructor(link, canvas) { | |
| this.link = link; | |
| this.canvas = canvas; | |
| this.context = canvas.getContext('2d'); | |
| this.context.lineWidth = 2; |
| /* Front End */ | |
| import { CollectorTraceExporter } from '@opentelemetry/exporter-collector'; | |
| import { DocumentLoad } from '@opentelemetry/plugin-document-load'; | |
| import { XMLHttpRequestPlugin } from '@opentelemetry/plugin-xml-http-request'; | |
| import { BatchSpanProcessor, ConsoleSpanExporter } from '@opentelemetry/tracing'; | |
| import { WebTracerProvider } from '@opentelemetry/web'; | |
| const tracerProvider = new WebTracerProvider({ | |
| plugins: [new DocumentLoad(), new XMLHttpRequestPlugin()], | |
| }); |
Create React App 4.0 is currently in alpha and supports using React 17 and the new JSX transform. To use it, follow these instructions.
Create a new app with npx create-react-app@next --scripts-version=@next --template=cra-template@next my-js-app
| # .github/workflows/app.yaml | |
| name: My Python Project | |
| on: push | |
| jobs: | |
| test: | |
| runs-on: ubuntu-latest | |
| timeout-minutes: 10 | |
| services: |
| from math import sqrt | |
| import torch | |
| from tqdm import tqdm | |
| import matplotlib.pyplot as plt | |
| import networkx as nx | |
| from torch_geometric.nn import MessagePassing | |
| from torch_geometric.data import Data | |
| from torch_geometric.utils import k_hop_subgraph, to_networkx | |
| import numpy as np |