Last active
December 29, 2015 04:29
-
-
Save hrbrmstr/7615334 to your computer and use it in GitHub Desktop.
SCADA map in R inspired by http://www.scadacs.org/iram.htmlI
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(xml2) | |
library(stringr) | |
library(tidyr) | |
library(dplyr) | |
library(ggplot2) | |
library(ggthemes) | |
library(maptools) | |
library(sp) | |
# inspired by this SCADACS post: http://www.scadacs.org/iram.html | |
# | |
# ... except that you'll need to use the wayback machine to see that since they | |
# seem to have removed all traces of it from their site. #howrude | |
# | |
# it's a good thing i'm a packrat | |
# | |
# and this is much better R code | |
# get the data | |
URL <- "http://rud.is/dl/risk_v2.kmz" | |
fil <- basename(URL) | |
if (!file.exists(fil)) download.file(URL, fil) | |
dat <- unzip("risk_v2.kmz") | |
# read it in | |
risk_kml <- read_xml(dat) | |
ns <- xml_ns_rename(xml_ns(risk_kml), d1 = "k") | |
# extract salient info from the XML file | |
color <- xml_text(xml_find_all(risk_kml, "//k:Folder/k:Document/k:Placemark/k:Style/k:IconStyle/k:color", ns=ns)) | |
color <- sprintf("#%s", color) | |
coords <- xml_text(xml_find_all(risk_kml, "//k:Folder/k:Document/k:Placemark/k:Point/k:coordinates", ns=ns)) | |
# clean it up a bit | |
risk <- data_frame(color, coords) | |
risk <- separate(risk, coords, c("long", "lat", "elev"), sep=",", convert=TRUE) | |
risk <- select(risk, long, lat, color) | |
risk <- data.frame(risk, stringsAsFactors=FALSE) | |
# only care about united states values for this vis | |
us_risk <- risk | |
us_map <- map("state", col="transparent", plot=FALSE, fill=TRUE) | |
us_map <- map2SpatialPolygons(us_map, IDs=us_map$names, proj4string=CRS("+proj=longlat +datum=WGS84")) | |
coordinates(risk) <- ~long+lat | |
proj4string(risk) <- CRS("+proj=longlat +datum=WGS84") | |
us_risk <- data.frame(us_risk[which(!is.na(risk %over% us_map)),], stringsAsFactors=FALSE) | |
# do the vis thing | |
us <- map_data("state") | |
gg <- ggplot() | |
gg <- gg + geom_map(data=us, map=us, | |
aes(x=long, y=lat, map_id=region), | |
color="white", fill="grey10", size=0.15) | |
gg <- gg + geom_point(data=us_risk, | |
aes(x=long, y=lat), colour=I(us_risk$color), | |
alpha=1/10, size=1.0) | |
gg <- gg + coord_map("albers", lat0=39, lat1=45) | |
gg <- gg + theme_map() | |
gg |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment